Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  polymer electrolyte
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
A totally solid state electric double layer capacitor was fabricated using a PVA-H2SO4-H2O polymer electrolyte and activated carbon powder (ACP) as an electrode material. The polymer electrolyte served both as a separator as well as a binder of carbon powder. The PVA-H2SO4-H2O (separator) as well as PVA-H2SO4-H20-ACP foils were prepared by the solution cast technique. The electric performance of the capacitors was investigated by cyclic voltammetry, galvanostatic charging/discharging and impedance spectroscopy. The prototype capacitors were assembled by contacting three foils (electrode + electrolyte + electrode) having a thickness of ca. 1.5-2 mm, a diameter of 1.8 cm and a capacity of ca. 0.6-1.5 F. The specific capacitance of ACP was estimated to be of ca. 130 F/g.
EN
New polymer electrolytes were prepared by mixing random copolymers of acrylonitrile and butyl acrylate (poly(AN-co-BuA)) with lithium bis(trifluoromethanesulfone) imide (LiTFSI). Electrical properties were studied by the impedance spectroscopy. The glass transition temperature was studied by DSC. Presented results concern a broad range of compositions, from a pristine copolymer to the system with 98 wt. % of salt. Correlation was established between the glass transition temperature, ionic conductivity, and salt content in the system. Mixtures of poly(AN-co-BuA) and LiTFSI exhibit much lower glass transition temperatures than the parent copolymer. Effects of ageing were observed for electrolytes with high salt content.
3
Content available remote Half-liquid electrolyte in the abrasive flow machining.
63%
EN
The investigations of polymer electrolytes with non organic fillers applied in the Abrasive Flow Machining (AFM) are presented in this paper. A flow of cations and anions is discussed for half-liquid electrolyte. The influence of electrolyte flow velocity on the current density is estimated for constant inter-electrode gap value and constant voltage. The results of the anode surface roughness measurements are also placed in this paper.
PL
Wspomaganie obróbki przetłoczno-ściernej procesem elektrochemicznym (ECM) umożliwiają polimerowe elektrolity. Przewodnictwo jonowe polimerowych elektrolitów jest wielokrotnie mniejsze od przewodnictwa elektrolitów stosowanych w ECM. Dodawanie wypełniaczy nieorganicznych w postaci materiałów ściernych do tych elektrolitów powoduje dalsze zmiejszenie przewodności. Z tego względu szczelina międzyelektrodowa, przez którą przepływa elektrolit polimerowy, musi mieć mały wymiar. To z kolei zwiększa opory przepływu polimerowego elektrolitu, który ma konsystencję półpłynnej pasty. Istotną rolę odgrywają również właściwości reologiczne takich past ze względów użytkowych. W przeprowadzonych badaniach wygładzania powierzchni płaskich i zaokrąglania ostrych krawędzi wykorzystano polimerowe elektrolity w postaci polimerowych żeli oraz hydrożeli na bazie akryloamidu.
EN
Simultaneous impedance measurements and optical observations of polymer electrolytes were conducted in an automated experimental setup, combining an impedance analyser, polarizing microscope with a heating stage and a digital camera. The polymer film was placed between glasses with indium tin oxide conductive layers, forming a transparent cell mounted in a custom-designed holder, which preserved an argon atmosphere. Results of in-situ studies for various compositions of poly(ethylene oxide) (PEO) with LiN(CF3SO2)2 salt (LiTFSI), as well as pure PEO, are presented. In the investigated systems, crystallization had a strong impact on ionic conductivity. It was found that the initial growth of crystalline structures caused only a small fraction of the total decrease of conductivity. A large decrease in conductivity was observed during the second stage of crystallization, when no significant changes in microscope picture were observed. In pure PEO and the PEO:LiTFSI 6:1 system, a dense crystalline structure developed, resulting in a decrease in conductivity of over two orders of magnitude. In dilute PEO:LiTFSI systems, a "loose" structure was formed, with amorphous areas preserved between crystallites, and conductivity decreased by only a factor of about 6.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.