Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 7

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  point cloud processing
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available Depth images filtering in distributed streaming
100%
EN
In this paper, we propose a distributed system for point cloud processing and transferring them via computer network regarding to effectiveness-related requirements. We discuss the comparison of point cloud filters focusing on their usage for streaming optimization. For the filtering step of the stream pipeline processing we evaluate four filters: Voxel Grid, Radial Outliner Remover, Statistical Outlier Removal and Pass Through. For each of the filters we perform a series of tests for evaluating the impact on the point cloud size and transmitting frequency (analysed for various fps ratio). We present results of the optimization process used for point cloud consolidation in a distributed environment. We describe the processing of the point clouds before and after the transmission. Pre- and post-processing allow the user to send the cloud via network without any delays. The proposed pre-processing compression of the cloud and the post-processing reconstruction of it are focused on assuring that the end-user application obtains the cloud with a given precision.
EN
This paper presents the analysis of PDOP factors for a ZigBee ground – based augmentation systems. It presents the idea of such a system followed by the results of assessment of application in Gdansk Marina. The results of the experiment show that the application of ZigBee can significantly improve PDOP value in harsh measurement environment. The analysis shows that it is possible to select an optimal location of ground-based transceiver on the basis of predicted trajectory and obstructions measured with laser scanning.
EN
Terrestrial laser scanning technology is becoming increasingly common for automated spatial data acquisition and digitization in the fields of surveying, civil engineering and architecture. The data from measurements made with terrestrial laser scanners are a huge array of points in space, called a point cloud, which describes the captured surface of the object under study. The point cloud processing is performed in specialized software products for handling measurements from laser scanners, which provide different possibilities for manipulating the point cloud and forming different results. The software available on the market differs according to its data processing capabilities and functionalities, application areas, methods used, manufacturer and cost. To be able to perform spatial data processing and analysis correctly and with high quality, it is important to understand the available functionalities of the different software products and their advantages and disadvantages compared to others. A comparison is made for three software packages for point cloud processing - Autodesk ReCap Pro, CloudCompare and Trimble RealWorks. The different functionalities available in the products are described and presented on small building measurements along with their performance accuracy and efficiency. The strengths and weaknesses of the different software products are identified through the comparison performed. The first section describes the basic principles of the terrestrial laser scanning method. In section two, the different point cloud processing software products on the market are presented, together with a description of the different file formats for data exchange and a theoretical section on point cloud registration, filtering, and modelling. The third section contains a presentation of the main functions and processing capabilities in Autodesk ReCap Pro, CloudCompare and Trimble RealWorks software. The fourth section describes the data used for the study, the measurements performed, their processing and results in the three software, together with an assessment of accuracy by control measurements. Section five contains conclusions and implications.
PL
Rozwój technologii naziemnego skanowania laserowego (TLS) w ostatnich latach spowodował jej uznanie i wdrożenie w wielu gałęziach gospodarki, w tym w leśnictwie i ochronie przyrody. Wykorzystanie chmur punktów 3D TLS w procesie inwentaryzacji drzew i drzewostanów oraz określaniu wybranych cech biometrycznych drzewa (np. średnicy pnia, wysokości drzewa, podstawy korony, liczby kształtu pnia) oraz wielkości surowca drzewnego (objętość drzew) staje się już praktyką. Wartością dodaną technologii TLS poza dokładnością samego pomiaru jest automatyzacja procesu przetwarzania chmury punktów 3D pod katem ekstrakcji wybranych cech drzew i drzewostanów. Praca prezentuje autorskie oprogramowanie (GNOM) służące do automatycznego pomiaru wybranych parametrów drzew na podstawie chmury punktów pozyskanych skanerem laserowym FARO FOCUS 3D. Dzięki opracowanym algorytmom (GNOM) określono lokalizację pni drzew na kołowej powierzchni badawczej oraz dokonano pomiarów: pierśnicy pni (d1.3), kolejnych średnic pnia na różnych wysokościach pnia, wysokości wierzchołka drzewa, podstawy korony i objętości pnia (metoda pomiaru sekcyjnego) oraz korony drzewa. Prace badawcze realizowano na terenie Nadleśnictwa Niepołomice w jednogatunkowym drzewostanie sosnowym (Pinus sylvestris L.) na powierzchni kołowej o promieniu 18.0 m w zasięgu której znajdowało się 16 sosen (14 z nich ścięto). Drzewostan w wieku 147 lat miał jednopiętrową budowę i był pozbawiony podszytu. Naziemne skanowanie laserowe przeprowadzono tuż przed pracami zrębowymi. Pierśnicę 16 sosen określono w pełni automatycznie algorytmem GNOM z błędem około +2,1% w stosunku do pomiaru referencyjnego wykonanego średnicomierzem. Średni, bezwzględny błąd pomiaru w chmurze punktów - półautomatycznymi metodami "PIXEL" (pomiędzy punktami) oraz PIPE (wpasowanie walca) w programie FARO Scene 5.x, wykazał błąd odpowiednio: 3.5% oraz 5.0%. Za referencyjną wysokość wierzchołka przyjęto pomiar taśmą mierniczą na ściętym drzewie. Średni błąd automatycznego określania wysokości drzew algorytmem GNOM na podstawie chmury punktów TLS wyniósł 6.3%, i był niewiele większy niż przy zastosowaniu manualnej metody pomiaru na przekrojach w programie TerraScan (Terrasolid; błąd ~5.6%). Pomiar wysokości podstawy korony wykazał błąd na poziomie +9,5%. Referencję w tym przypadku stanowił pomiar taśmą wykonany ściętych sosnach. Przetwarzanie chmur punktów TLS algorytmami GNOM w przypadku 16 analizowanych sosen trwało poniżej 10 min (37 sek. /drzewo). W pracy wykazano jednoznacznie przydatność technologii TLS w leśnictwie i jej wysoką dokładność przy pozyskiwaniu danych biometrycznych drzew oraz dalszą potrzebę zwiększania stopnia automatyzacji przetwarzania chmur punktów 3D pochodzących z naziemnego skanowania laserowego.
EN
Rapid development of terrestrial laser scanning (TLS) in recent years resulted in its recognition and implementation in many industries, including forestry and nature conservation. The use of the 3D TLS point clouds in the process of inventory of trees and stands, as well as in the determination of their biometric features (trunk diameter, tree height, crown base, number of trunk shapes), trees and lumber size (volume of trees) is slowly becoming a practice. In addition to the measurement precision, the primary added value of TLS is the ability to automate the processing of the clouds of points 3D in the direction of the extraction of selected features of trees and stands. The paper presents the original software (GNOM) for the automatic measurement of selected features of trees, based on the cloud of points obtained by the ground laser scanner FARO. With the developed algorithms (GNOM), the location of tree trunks on the circular research surface was specified and the measurement was performed; the measurement covered the DBH (l: 1.3m), further diameters of tree trunks at different heights of the tree trunk, base of the tree crown and volume of the tree trunk (the selection measurement method), as well as the tree crown. Research works were performed in the territory of the Niepolomice Forest in an unmixed pine stand (Pinussylvestris L.) on the circular surface with a radius of 18 m, within which there were 16 pine trees (14 of them were cut down). It was characterized by a two-storey and even-aged construction (147 years old) and was devoid of undergrowth. Ground scanning was performed just before harvesting. The DBH of 16 pine trees was specified in a fully automatic way, using the algorithm GNOM with an accuracy of +2.1%, as compared to the reference measurement by the DBH measurement device. The medium, absolute measurement error in the cloud of points - using semi-automatic methods "PIXEL" (between points) and PIPE (fitting the cylinder) in the FARO Scene 5.x., showed the error, 3.5% and 5.0%,.respectively The reference height was assumed as the measurement performed by the tape on the cut tree. The average error of automatic determination of the tree height by the algorithm GNOM based on the TLS point clouds amounted to 6.3% and was slightly higher than when using the manual method of measurements on profiles in the TerraScan (Terrasolid; the error of 5.6%). The relatively high value of the error may be mainly related to the small number of points TLS in the upper parts of crowns. The crown height measurement showed the error of +9.5%. The reference in this case was the tape measurement performed already on the trunks of cut pine trees. Processing the clouds of points by the algorithms GNOM for 16 analyzed trees took no longer than 10 min. (37 sec. /tree). The paper mainly showed the TLS measurement innovation and its high precision in acquiring biometric data in forestry, and at the same time also the further need to increase the degree of automation of processing the clouds of points 3D from terrestrial laser scanning.
EN
In this paper we present the concept and our implementation of a suite of tools supporting the annotation of sequential data. These tools are useful in experiments related to multimedia data sequences. We show the two exemplary usage scenarios of these tools in the process of building the gesture recognition system.
PL
W artykule przedstawiamy koncepcję i naszą implementację zestawu narzędzi wspomagających adnotowanie danych sekwencyjnych. Opracowane narzędzia są użyteczne w eksperymentach związanych z sekwencjami danych multimedialnych. Przedstawiono dwa przykładowe scenariusze użycia tych narzędzi w procesie budowy systemu rozpoznawania gestów wykonywanych dłonią.
PL
Obrazy pozyskane podczas rejestrowanej w trakcie skanowania laserowego chmury punktów pozwalają na tworzenie tekstur modelowanego obiektu, co zwiększa jego zawartość informacyjną. Generowanie tekstur bezpośrednio z pozyskanych obrazów wymaga znajomości parametrów odwzorowania, w którym powstaje zdjęcie. Jednak także informacja o kolorze zapisana jako atrybuty punktów chmury może być wykorzystana do tworzenia tekstur modelowanego obiektu. W takim przypadku chmura punktów może pośredniczyć w tworzeniu obrazów tekstur a cały proces teksturowania odbywa się bez bezpośredniego udziału zdjęć. Celem niniejszych badań było opracowanie metody teksturowania modeli obiektów o złożonej geometrii na podstawie kolorowej chmury punktów pochodzącej z naziemnego skaningu laserowego. Wynikiem pracy jest autorski program do tworzenia tekstur, bezpośrednio w oparciu o kolory RGB chmury punktów. Danymi wejściowymi do programu są chmury punktów w formacie tekstowym oraz obiekty 3D w formacie VRML. W celu przyspieszenia obliczeń w pierwszym kroku wykonywana jest automatyczna segmentacja chmur punktów. Następnie pozyskiwana jest informacja o geometrii płaszczyzn obiektu na podstawie pliku VRML. W efekcie analiz przestrzennych pomiędzy położeniem pikseli na teksturowanych płaszczyznach i chmurą punktów, pozyskiwane są informacje o kolorze pikseli oraz tworzone są tekstury obiektu. Uzyskane wyniki pokazują, że tworzone w ramach prac testowych tekstury mogą posiadać artefakty, będące efektem niedopasowania radiometrycznego zdjęć pozyskiwanych z różnych stanowisk skanowania.
EN
Images taken during point cloud acquisition using laser scanning can be subsequently utilized for generating textures of 3D models. As a result the final amount of information associated with produced model is increased. Automatic texture generation using captured images directly, demands the knowledge about parameters describing image projection. However using the information about color stored as point cloud attributes allows texture generation without using the images directly. The addressed researches aim to develop a method of model texturing. As the final result a simple GUI application has been created in C++. Point clouds in text format and VRML models are used as the input data. In order to speed up the calculation process, in the first step the automatic segmentation of the point clouds is performed. Secondly the information about the object surfaces is obtained based on VRML file and then textures are defined. After performing spatial analysis between pixels position on textured surfaces and point cloud, the pixels color information is computed and texture images are generated. The results show that the test objects textures may be affected by noise resulting from radiometric discrepancies between images acquired from different standpoints.
EN
The technology of terrestrial laser scanning and its possibilities are subject of scientific research in the area of geodesy, construction, architecture and even more over the last decades. This method provides point clouds data, which contains full and accurate representation of the geometrical parameters of the examined subject. This publication discusses in short the principles and possibilities for creating a three-dimensional data model using the advantages of terrestrial laser scanning. The building of University of Architecture, civil engineering and geodesy, situated in Semkovo resort, Blagoevgrad district is selected for the purpose of the task. Classical land surveying measurements with a total station and terrestrial laser scanning are used for the creation of the three-dimensional models. A comparison and evaluation of the obtained model is made. The result of this evaluation indicates that the technology of terrestrial laser scanning is efficient for representation of high quality data with a wide scope of advantages such as high range, fast data processing, high precision and accurate details.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.