A double closed loop control strategy composed of inner voltage-loop and external current-loop with a current-reference feedforward link was proposed based on the output characteristic of an air plasma cutting converter(APCC) with non-contact arc ignition. An equivalent mathematical model of the APCC was presented and a controller was designed via frequency domain analysis. Experiments verified that the proposed control strategy showed excellent dynamic and static performance, which significantly improved the arc ignition and the robustness against load disturbance.
PL
Przedstawiono strategię sterowania konwertera do cięcia plazmowego z podwójną pętlą złożoną z wewnętrznej pętli napięcia i zewnętrznej prądowej. Przedstawiono model matematyczny i projekt z analizą w domenie częstotliwości. Obiekt sprawdzono eksperymentalnie.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The Static Synchronous Compensator (STATCOM a.k.a. SVG) is widely used to regulate dynamic reactive power and to solve dynamic voltage stability problems. Modeling shows that a cascaded STATCOM, which is composed of several cascaded H-bridges, not only has strong coupling characteristics when an LCL filter is added but it is also a non-linear, multivariable system. Therefore, its practical design and application are dicult to implement. In this paper an internal decoupling control algorithm is introduced to provide independent control of the active and reactive currents. Decoupling control algorithms are proposed, and models and simulation of the decoupling are provided. We describe the setting up of a simulation and experiments with a cascaded STATCOM based on combined circuit topology with a multi-field programmable gate array (FPGA), and double-loop control algorithms with a current inner loop, and a capacitor voltage outer loop. To provide control of the current inner loop, proportional-integral (PI) and resonant controllers are used, having the control ability to cancel harmonics while compensating for the reactive power. This paper presents new current-tracing control models that compensate for the fundamental current and eliminate selective harmonics by adopting a d-q synchronous reference frame, and a discrete Fourier transform (DFT). Voltage balance is realized by introducing modulation wave distribution strategies. Furthermore, both simulation and experiments are employed to verify the feasibility and eectiveness of the control strategy.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.