Let (…) and let L* be a linear right fractional differential operator such that L*(f) ≥ 0 throughout [-1, 0]. We can find a sequence of polynomials Qn of degree ≤ n such that L*(Qn)≥ 0 over [-1, 0], furthermore f is approximated right fractionally and simultaneously by Qn on [-1, 1]. The degree of these restricted approximations is given via inequalities using a higher order modulus of smoothness for f(r).
The one-dimensional time-fractional advection-diffusion equation with the Caputo time derivative is considered in a half-space. The fundamental solution to the Dirichlet problem and the solution of the problem with constant boundary condition are obtained using the integral transform technique. The numerical results are illustrated graphically.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.