Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  pneumonia diagnosis
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Respiratory sound denoising using sparsity-assisted signal smoothing algorithm
100%
EN
Noises are the unavoidable entities which stands as a big barrier in the field of computerized lung sound (LS) based disease diagnosis, as it impairs the quality of LS and therefore greatly misleads the clinical interpretations done based on that. It has numerous sources, of which a few of them could be the noises due to body sounds, environmental noises, power line noises and recording artifacts, which easily contaminates the LS recordings. This paper presents a novel denoising algorithm to eliminate the noises from LS recordings in a more powerful way using Butterworth band-pass filter and sparsity assisted signal smoothing (SASS) algorithm. This study is carried out over LS captured from 80 Chronic Obstructive Pulmonary Disease (COPD), 80 pneumonia and 80 healthy participants in a clinical environment. Each of the recorded LS is denoised using Butterworth band-pass filter and sparse-assisted signal smoothing algorithm. The denoising performance of the proposed algorithm is evaluated on the basis of denoising performance parameters. As per the evaluation of the denoising performance parameters, it is observed that the proposed denoising method suppressed the LS noises with the signal to noise ratio (SNR) of 66.8 dB and with the peak signal to noise ratio (PSNR) of 78.5 dB. The proposed endeavour can be recommended for clinical use for producing noise free LSs to bring effective interpretations. The future endeavours involve the suppression of the heart sound noises from the LS recordings.
EN
Pneumonia is a leading cause of mortality in limited resource settings (LRS), which are common in low- and middle-income countries (LMICs). Accurate referrals can reduce the devastating impact of pneumonia, especially in LRS. Discriminating pneumonia from other respiratory conditions based only on symptoms is a major challenge. Machine learning has shown promise in overcoming the diagnostic difficulties of pneumonia (i.e., low specificity of symptoms, lack of accessible diagnostic tests and varied clinical presentation). Many scientific papers are now focusing on deep-learning methods applied to clinical images, which is unaffordable for initial patient referral in LMICs. The current study used a dataset of 4500 patients (1500 patients affected by bronchitis, 3000 by pneumonia) from a middle-income country, containing information on subject population characteristics, symptoms and laboratory test results. Manual feature selection was performed, focusing on clinical symptoms that are easily measurable in LRS and in community settings. Three common machine learning methods were tested and compared: logistic regression; decision tree and support vector machine. Models were developed through a holdout process of training-validation and testing. We focused on six clinically relevant, easily interpreted patient symptoms as best indicators for pneumonia. Our final model was a decision tree, achieving an AUC of 93%, with the advantage of being fully intelligible and easily interpreted. The performance achieved suggested that intelligible machine learning models can enhance symptom-based referral of pneumonia in LRS and in community settings.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.