The paper presents a FE-analysis of a spontaneous shear localization inside non-cohesive sand during plane strain compression. The calculations were carried out with a gradient-enhanced hypoplastic constitutive law. The hypoplastic law can reproduce essential features of granular bodies depending on the void ratio, pressure level and deformation direction. To model the thickness of shear zones, a characteristic length of the microstructure was incorporated via the second gradient of the modulus of the deformation rate. To determine the effect of micro-structure, the analysis was performed with different characteristic lengths for the same specimen size.
W pracy wykonano ocenę wykorzystania próby ściskania próbek płaskich (PSC) do wyznaczania naprężenia uplastyczniającego. Wykazano, że rozkład naprężenia i odkształcenia w tej próbie zależy mocno od wymiarów próbki i kowadła, co utrudnia interpretację wyników. Zastosowanie analizy odwrotnej eliminuje wpływ nierównomierności odkształceń i naprężeń, ale w przypadku PSC wymaga bardzo długich czasów obliczeń. Aby poprawić efektywność rozwiązania uproszczono model PSC do 2D.
EN
Possibility of application of the plane strain compression test (PSC) to the determination of the flow stress was evaluated. It was shown that distributions of strains and stresses are very nonuniform, what makes interpretation of results difficult. Inverse analysis eliminates effects of in homogeneities but in the case of the PSC it involves high computing costs. To improve the efficiency of the analysis PSC was simplified to 2D model.
The microstructure and the texture evolutions of partly recrystallized samples of pure Al and the Al-1%wt. Mn alloy have been characterized by a high resolution SEM/EBSD. The single crystals of the Goss{110}<001> and brass{110}<112> orientations, stable in the plane strain compression, were deformed in a channel-die up to 60% to develop a homogeneous structure composed of two sets of symmetrical primary microbands and then shortly annealed. It is documented that the orientations of the initial nucleus were scattered but not accidental. The disorientation axes in the orientation relationship across the recrystallization front usually coincide with one of the <112>, <221>, <102> or <111> crystallographic directions and were rather rarely close to the <110> or <001> directions. The disorientation axis of the <111>- type is only one of the few most often observed.
PL
Przemiany tekstury w poczatkowych stadiach rekrystalizacji sa przedmiotem intensywnych badan, zwłaszcza tych które dotycza półwyrobów płaskich stosowanych w przemysle do wytwarzania opakowan droga głebokiego tłoczenia. W niniejszej pracy wykorzystano wysokorozdzielczy system SEM/EBSD do analizy tych zmian w nieswobodnie sciskanych próbkach aluminium oraz stopu Al-1%Mn. Dla przejrzystosci prowadzonej analizy, w badaniach wykorzystano próbki monokrystaliczne, o orientacjach stabilnych w płaskim stanie odkształcenia, tj. Gossf110g<001> i brassf110g<112>. Poddano je nieswobodnemu sciskaniu (powszechnie uznawanemu za modelowe przyblizenie procesu walcowania) do 40% i 60%, a nastepnie analizowano ich zachowanie w poczatkowych stadiach rekrystalizacji. W stanie po deformacji obserwowano jednorodna strukture dwu symetrycznie usytuowanych rodzin mikropasm, która w procesie rekrystalizacji sprzyjała pojawieniu sie nowych ziaren. Udokumentowano, ze orientacje poczatkowych ziaren, wyrastajacych ze struktury stanu zdeformowanego nie sa przypadkowe, i tylko scisle okreslona liczba grup orientacji moze sie pojawic w poczatkowym stadium wyzarzania. Dezorientacja obliczona poprzez migrujacy front rekrystalizacji zwiazana jest najczesciej z rotacja dookoła kierunków krystalograficznych typu <112>, <221>, <102> lub <111>, oraz rzadziej <110> lub <001>. Os dezorientacji typu <111> jest tylko jedna z kilku czesciej spotykanych.
W pracy analizowano mechanizm odpowiedzialny za formowanie się w procesie rekrystalizacji ziaren o orientacji cube{100}<001> oraz ~S{123}<634> oraz warunki ich wzrostu. Wykorzystano fakt, że odkształcenie w matrycy kanalikowej (PSC) oraz w matrycy równokątowej (ECAE) prowadzą do zasadniczo odmiennych "obrazów tekstury" stanu odkształconego. Badania prowadzono na polikrystalicznym stopie AA1050 z wykorzystaniem metod dyfrakcji promieni X oraz systemu SEM/EBSD. Orientacja {100}<001> jest słabo zaznaczona w materiale wyjściowym po walcowaniu na gorąco oraz w próbkach po procesie ECAE. W próbkach przetwarzanych w procesie PSC dominowały składowe tekstury wzdłuż włókna β (S, C, Bs), podczas gdy po procesie ECAE próbki scharakteryzowane były dwoma komplementarnymi składowymi {124}<561> ze słabym „rozmyciem” do położenia {100}<011>. Uzyskane wyniki pokazują, że po wyżarzaniu ekstremalnie silna składowa "cube" oraz S w obrazie tekstury rekrystalizacji są formowane tylko w próbkach odkształcanych w matrycy kanalikowej. Wyżarzanie próbek po procesie ECAE nie prowadziło do wzrostu intensywności tych składowych, pomimo, że obszary o tej orientacji były identyfikowane w stanie zdeformowanym. Brak składowej "cube" oraz S w obrazie tekstury rekrystalizacji skorelowano z nieobecnością składowych S w stanie zdeformowanym. Po procesie ECAE główne składowe tekstury odkształcenia były odchylone od położenia orientacji S o kąt ~20-30o. W procesie rekrystalizacji uległy one transformacji do dwu położeń ~{100}<011> i ~{221}<114> drogą rotacji dookoła osi <110>.
EN
The microstructure and texture during deformation and early stages of annealing have been studied to elucidate the mechanism of cube and S-oriented grains formation in a commercial AA1050 alloy. Samples were deformed along two deformation modes to form different as-deformed texture components and then lightly annealed: one group was plane strain compressed (PSC) in a channel-die, whereas the second group was deformed by equal channel angular extrusion (ECAE). The textures were measured by X-ray diffraction and SEM/EBSD. It was found that the recrystallization behaviour of AA1050 alloy was related to the texture components developed during the previous cold deformation. After PSC, a standard β fibre texture is found (S, Cu, Bs components) whereas the ECAE samples are characterized by {124}<561> orientation with a slight scattering towards {100}<011>. A very weak cube texture component was observed in the samples after both deformation modes. During annealing cube and S-oriented grains were formed extensively in the PSC samples, primarily in association with near S-oriented as-deformed areas and characterized by <111> local misorientations. Despite the presence of cube fragments in the deformed state cube-oriented grains did not grow by recrystallization during annealing of the ECAE samples. Their main as-deformed texture components were ~20&-30o deviated from the S orientation. During recrystallization these transformed to two components of ~{100}<011> and ~{221}<114>-type essentially by <110> rotations.
Microstructure and texture development in medium-to-high stacking fault energy face centred cubic metals were investigated in order to examine the role of lattice re-orientation on slip propagation across grain boundaries and to characterize the influence of micro- and macro-scale copper-type shear bands on textural changes at large deformations. Polycrystalline pure copper (fine - and coarse - grained) and fine-grained AA1050 alloy were deformed in plane strain compression at room temperature to form two sets of well-defined macroscopic shear bands. The deformation-induced sub-structures and local changes in crystallographic orientations were investigated mostly by scanning electron microscopy equipped with high resolution electron backscattered facility. In all the deformed grains within macro- shear bands a strong tendency to strain-induced re-orientation was observed. The flat, strongly deformed grains exhibited a deflection within narrow areas. The latter increased the layers’ inclination with respect to ED and led to kink-type bands, which are the precursors of MSBs. The mechanism of macro- / micro-shear bands formation is strictly crystallographic since in all the areas of the sheared zone, the crystal lattice rotated such that one of the {111} slip planes became nearly parallel to the shear plane and the <011> direction became parallel to the direction of maximum shear. This strain-induced crystal lattice rotation led to the formation of specific macro- / micro-shear bands components that facilitated slip propagation across the grain boundaries without any visible variation in the slip direction.
PL
W pracy badano zmiany strukturalne i teksturowe w metalach o sieci regularnej ściennie centrowanej związane z lokalną re-orientacją sieci krystalicznej wynikającą z formowania się mikro- i makro- pasm ścinania. Analizowano polikrystaliczne próbki miedzi oraz aluminium o czystości technicznej (stop AA1050) odkształcane w temperaturze otoczenia w próbie nieswobodnego ściskania do zakresu odkształceń, w których następuje wyraźne uformowanie się dwóch rodzin makroskopowych pasm ścinania. W badaniach wykorzystano skaningowy mikroskop elektronowy wyposażony w system automatycznego pomiaru orientacji lokalnych. Zaobserwowano, że w ziarnach umiejscowionych w obszarze makroskopowych pasm ścinania występuje ściśle zdefiniowana tendencja rotacji sieci krystalicznej, w wyniku której jedna z płaszczyzn typu {111} przyjmuje położenie zbliżone do położenia płaszczyzny ścinania, a jeden z kierunków typu <110> (lub <112>) wykazuje tendencję do sytuowania się równolegle do kierunku ścinania. Obserwowana w obszarze wnętrza pasm ścinania rotacja prowadzi do uformowania się specyficznej (mikro)tekstury, która umożliwia propagację poślizgów poprzez granice ziaren bez ‘istotnej’ zmiany kierunku ścinania.
Plane strain compression tests on Al-Li alloy have shown that grains undergo a significant deformation shear. This deformation favours the formation of the Bs(011)<211> texture component. The grain orientations change in accordance with the RC2(epsilon 12) and RC(epsilon 13) models.
PL
Badania procesu odkształcenia stopu Al-Li w płaskim stanie odkształceń wykazały, że ziarna są poddane znacznemu ścinaniu. Ścinanie to ułatwia powstawanie składowej tekstury typu Bs (001)<211>. Orientacje ziaren zmieniają się zgodnie z przewidywaniami modeli opisanych w literaturze pod nazwą RC2(epsilon 12) i RC2(epsilon 13).
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.