Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Ograniczanie wyników
Czasopisma help
Lata help
Autorzy help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 57

Liczba wyników na stronie
first rewind previous Strona / 3 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  phospholipid
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 3 next fast forward last
|
|
nr 1
EN
This review paper focused on the effect of typical phosphorlipid (or lecithin) and enzyme modification on electrokinetic parameters of oil/water emulsion. Physicochemical properties of the systems were investigated taking into account the effective diameter of the droplets as well as the zeta potentials using the dynamic light scattering technique. The effect of phospholipid and phospholipase modification on interfacial properties of o/w emulsion was examined as a function of temperature, pH and ionic strength (effect of Na+ or Ca2+ ions which occur in the physiological fluids). The particular role of Ca2+ ions in the dispersions with zwitterionic phospholipids (the main components of biological membrane) was confirmed.The phospholipids dipalmitoylphosphatidylcholine, DPPC or dioleoylphosphatidylcholine, DOPC having the same headgroup bound to the apolar tail composed of two saturated or unsaturated chains were used as stabilizing agents. The effective diameters do not always correlate with the zeta potentials. A possible reason for such behaviour might a mechanism different from the electrostatic stabilization. Phospholipids and their mixtures (e.g. lecithin) may undergo spontaneous aggregation in aqueous solution and selforganize into liposomes, which possess different sizes and surface affinities. These unique behaviours of phospholipid dispersion can be controlled using the investigated parameters. These findings are expected to increase in importance as phospholipid systems see more use in self-assembly applications.The other aim of the paper was the comparison of the enzyme phospholipase influence on lipid hydrolysis in the o/w emulsion environment. The work is the study which presents the twofold effect of ethanol dipoles on phosholipid hydrolysis. It is believed that the enzyme effect on the phospholipid aggregation behaviour at the oil-water interface will be helpful for understanding differentbiological phenomena.
EN
The interaction of methylbromfenvinfos with model and native membranes was investigated using fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene (DPH), a probe located in the hydrophobic core of the bilayer and l,3-bis-(l-pyrene) propane, a probe distributed in the outer region of the bilayer. DPH reported a broadening of the transition profile and solidifying effects in the fluid phase of liposomes formed from dimyristoyl (DMPC), dipalmitoyl (DPPC), and distearoyl (DSPC) phosphatidylcholine in the presence of 50 μM of the insecticide. Py(3)Py detected an ordering effect of the insecticide in the fluid state of the lipids and abolished pretransition in DPPC and DSPC vesicles. Cholesterol added to DMPC decreased the influence of the insecticide. The effect of methylbromfenvinfos on the fluidity of some native membranes, namely erythrocytes, lymphocytes, brain microsomes, and sarcoplasmic reticulum, depended on the cholesterol content of these membranes.
EN
Family of protein kinase C (PKC) isozymes play a key role in transducing a vast number of signals into the cells. The members of classical PKC family are activated by binding of various lipid ligands to one of the several cysteine-rich domains of the enzyme. Second cysteine-rich (Cys2) domain of PKC-γ was expressed in Escherichia coli as a fusion protein with glutathione-S-transferase (GST) using the cDNA sequence from rat brain. The Cys2 protein after cleavage from GST was purified to homogeneity using glutathione-agarose and Mono-S cation exchanger column. In order to investigate the interaction of lipids and calcium with Cys2 protein we used UV spectroscopy. The UV spectrum of Cys2 protein exhibited a maximum at 205 nm. Exposition of Cys2 protein to phosphatidylserine (PS) vesicles resulted in significant decrease in the absorbance in the 210 nm region. Changes in UV spectrum of Cys2 protein induced by phorbol 12,13-dibutyrate (PDB) were smaller than those induced by PS, and addition of PDB with PS had no effect on the PS induced changes in UV spectrum of Cys2. Neither phosphatidylcholine (PC) nor phosphatidylethanolamine (PE) affected UV spectrum of Cys2 but in the presence of phosphatidylinositol 4,5-bisphosphate (PIP2) or phosphatidylinositol 4-phosphate (PIP) vesicles some changes were observed. Calcium ions alone or in the presence of PS had no effect on the UV spectrum of Cys2 protein. These data indicate that PS comparing to PDB, interacts with a larger area of Cys2 protein, and that the binding sites for these two molecules are at least overlapping. The site of PIP and PIP2 interaction with PKC-γ is distinct from that of phorbol ester binding site.
EN
Previous work has indicated that two types (A and B) of binding sites for hexokinase exist, but in different proportions, on brain mitochondria from various species. Hexokinase is readily solubilized from Type A sites by glucose 6-phosphate (Glc-6-P), while hexokinase bound to Type B sites remains bound even in the presence of Glc-6-P. Type A:Type B ratios are approximately 90:10, 60:40, 40:60, and 20:80 for brain mitochondria from rat, rabbit, bovine and human brain, respectively. The present study has indicated that MgCl2-dependent partitioning of mitochondrially bound hexokinase into a hydrophobic (Triton X-114) phase is generally correlated with the proportion of Type B sites. This partitioning behavior is sensitive to phospholipase C, implying that the factor(s) responsible for conferring hydrophobic character is(are) phospholipid(s). Substantial differences were also seen in the resistance of hexokinase, bound to brain mitochondria from various species, to solubilization by Triton X-100, Triton X-114, or digitonin. This resistance increased with proportion of Type B sites. Enrichment of bovine brain mitochondria in acidic phospholipids (phosphatidylserine or phosphatidylinositol), but not phosphatidylcholine or phosphatidylethanolamine, substantially increased solubilization of the enzyme after incubation at 37°C. Collectively, the results imply that the Type A and Type B sites are located in membrane domains of different lipid composition, the Type A sites being in domains enriched in acidic phospholipids which lead to greater susceptibility to solubilisation by Glc-6-P.
EN
Bobowiec R., Studziński T. and Sikorska M.: Effects of sodium taurocholate and sodium deyhdrocholate on bile flow and lipid and bilirubin secretion in sheep. Acta Physiol. Pol. The investigation was performed on 8 sheep with implanted catheters in the common bile duct and in the cystic duct. Sodium taurocholate and sodium dehydrocholate were infused into the jugular vein at the rate of 50 µmol/min for 20 min. Directly after the termination of the sodium taurocholate infusion, the volume of the secreted bile increased from 8.4-9 µl· kg⁻¹ · min⁻¹ to the highest mean value of 17.8 µl·kg⁻¹ , min⁻¹ , with a simultaneous increase in the concentration of cholates from 1.71 mmol/1 to 4.82 mmol/1 and bilirubin from 271.1 µmol/1 to 461.7 µmol/1. The concentration of cholesterol and phospholipids in the bile also increased, but did not reach statistically significant values. The infusion of sodium dehydrocholate caused an increase in the bile secretion to the highest mean value of 20.59 µ1 · kg⁻¹ · min⁻¹ with a simultaneous decrease in the concentration of bilirubin to 148.75 µmol/1, cholesterol to 233.0 µg/ml, phospholipids to 56.11 µg/ml and cholate to 1.0 mmol/1. The results show that biliary secretion of phospholipids, cholesterol and bilirubin is dependend on the secretion of sodium taurocholate rather than on dehydrocholic acid.
first rewind previous Strona / 3 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.