Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  pattern avoidance
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Pattern 1^j+10^j Avoiding Binary Words
100%
EN
In this paper we study the enumeration and the construction of particular binary words avoiding the pattern 1^j=10^j By means of the theory of Riordan arrays, we solve the enumeration problem and we give a particular succession rule, called jumping and marked succession rule, which describes the growth of such words according to their number of ones. Moreover, the problem of associating a word to a path in the generating tree obtained by the succession rule is solved by introducing an algorithm which constructs all binary words and then kills those containing the forbidden pattern.
2
Content available remote Pseudopower Avoidance
88%
EN
Repetition avoidance has been intensely studied since Thue’s work in the early 1900's. In this paper, we consider another type of repetition, called pseudopower, inspired by theWatson-Crick complementarity property of DNA sequences. A DNA single strand can be viewed as a string over the four-letter alphabet {A,C,G, T }, whereinA is the complement of T , while C is the complement of G. Such a DNA single strand will bind to a reverse complement DNA single strand, called its Watson-Crick complement, to form a helical double-stranded DNA molecule. The Watson-Crick complement of a DNA strand is deducible from, and thus informationally equivalent to, the original strand. We use this fact to generalize the notion of the power of a word by relaxing the meaning of "sameness" to include the image through an antimorphic involution, the model of DNA Watson- Crick complementarity. Given a finite alphabet &Sigma: an antimorphic involution is a function Θ : Σ*→Σ* which is an involution, i.e., Θ2 equals the identity, and an antimorphism, i.e., Θ(uv) = Θ(v)Θ(u), for all u∈Σ* For a positive integer k, we call a word w a pseudo-kth-power with respect to Θ if it can be written as w = u1 . . . uk, where for 1 ≤ i, j ≤ k we have either ui = uj or ui = Θ(uj). The classical kth-power of a word is a special case of a pseudo-kth-power, where all the repeating units are identical. We first classify the alphabets Σ and the antimorphic involutions . for which there exist arbitrarily long pseudo-kth-power-free words. Then we present efficient algorithms to test whether a finite word w is pseudo-kth-power-free.
3
75%
EN
Blanched-Sadri and Woodhouse in 2013 have proven the conjecture of Cassaigne, stating that any pattern with \(m\) distinct variables and of length at least \(2^m\) is avoidable over a ternary alphabet and if the length is at least \(3\cdot 2^{m-1}\) it is avoidable over a binary alphabet. They conjectured that similar theorems are true for partial words – sequences, in which some characters are left “blank”. Using method of entropy compression, we obtain the partial words version of the theorem for ternary words.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.