Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  pathfinding
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Affective pathfinding in video games
100%
EN
To allow player submerge in created environment of a video game, agents called Non-Player Characters (NPCs) should act believably. One of the most vital aspect, in case of NPCs is pathfinding. There are a few methods that allow change path finding algorithms to become more human-like. Yet, those are not considering many vital aspects of human decisions regarding path choosing. The main purpose of this paper is to present known approaches and show example of a new approach that wider considers psychological aspects of decision making in case of choosing a path.
EN
Every year, new vessels equipped with dynamic positioning (DP) systems are built in shipyards around the world. Due to the increasing number of offshore vessels, a client hiring a vessel should analyse the vessel's positioning capability charts to determine which water areas the vessel is designed for. These charts are represented as polar diagrams. In the centre of the chart is a shape symbolising the ship's body, and the values on the chart represent the maximum wind speed that can affect the ship at a given angle, at which the vessel will maintain its position. Vessel capability charts can also be used by the crew during thrusters failures to determine at what angle to the wind direction the vessel should stand to minimise the impact of wind forces. Analyses that determine a vessel's ability to keep position can be performed by classification societies or other companies with approval from classification societies. The article presents the concept of a pathfinding algorithm to determines the route of the ship’s passage with minimal energy consumption. The algorithm uses the information about environmental forces affecting the ship and information about thrust allocation obtained from Capability Plots.
4
84%
EN
The article presents the client-server approach in the navigation system for the blind - “Voice Maps”. The authors were among the main creators of the prototype and currently the commercialization phase is being finished. In the implemented prototype only exemplary, limited spatial data were used, therefore they could be stored and analyzed (for pathfinding process) in the mobile device’s memory without any difficulties. The resulting increase of spatial data scale and complexity required a modification of the data storage and operation. Consequently, the decision was made to maintain a central spatial database, which is accessed remotely. After that modification, the mobile application fetches the required batch of spatial data (with the pathfinding and search results) from the central server through the mobile internet connection, which has also become necessary for other purposes (e.g. voice recognition). The authors present the advantages and disadvantages of this new approach along with the results of the server operational tests.
EN
Due to the fact that the A* algorithm is very flexible, can be used in a variety of situations, it became the main algorithm used in our study. Its biggest drawback is the need for large amounts of memory to store all the surveyed points. This problem greatly increases with the increase in the study area. However, the A* algorithm allows the robots to make efficient decisions on how to move from the starting to the ending point. Because of this, the A* algorithm should be taken into account as an option for pathfinding for intelligent robots.
PL
Ze względu na to, że Algorytm A* jest bardzo elastyczny, można go stosować różnych sytuacjach, stał się on głównym algorytmem wykorzystywanym podczas naszych badań. Jego największą wadą jest potrzeba dużej ilości pamięci w celu zapamiętania wszystkich zbadanych punktów. Ten problem znacznie się nasila wraz ze wzrostem badanego obszaru. Jednak algorytm A* pozwala robotom na podejmowanie sprawnych decyzji co do sposobu poruszania się od punktu startowego do końcowego. Z tego powodu warto brać algorytm A* pod uwagę jako opcję dla poszukiwania dróg przez inteligentne roboty.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.