W pracy przedstawiono zachowanie się stopu z grupy Co-Cr-Mo poddanego rożnym wariantom procesu pasywacji. Badano własności elektrochemiczne stopu po pasywacji za pomocą technik polaryzacji potencjodydynamicznej. Określono parametry charakteryzujące odporność na korozję elektrochemiczną, takie jak opór polaryzacji, prąd i potencjał korozyjny. Stwierdzono zróżnicowany wzrost odporności korozyjnej stopu po każdym z zastosowanych wariantów pasywacji. Największy wzrost odporności korozyjnej stwierdzono dla stopu pasywowanego azotanem sodu.
EN
In this work, the behavior of a Co-Cr-Mo-type alloy treated by chemical passivation processes was investigated. More specifically, the electrochemical properties of the alloy were studied in detail. The potentiodynamic polarization technique in 0.5 M Cl solution was used to determine the corrosion resistance of samples. The main statement is that the chemical passivation improve the corrosion resistance of the alloy. The best resistance occurs in case of the alloy passivated by NaNO3.
The effect of different surface preparation methods such as mechanical, chemical and electrochemical surface preparation on the formation, stability and deterioration of surface films formed on austenitic 304 stainless steel was investigated in Tyrode’s physiological solution by cyclic polarization curves, AC impedance measurements surface techniques. A hysteresis loop in a cyclic polarization curve was obtained that indicates a delay in repassivation of an existing pit when the potential is scanned cathodically. Electrolytic polishing and ultrasonic cleaning improves corrosion resistance by increasing the value of the corrosion potential and breakdown potential of the passive layer as well as the pit initiation potential. After mechanical polishing no perfect passivation region was observed. Change in surface fractal is in good agreement with the result obtained from height roughness factor of AFM.
PL
Wpływ różnych sposobów przygotowania powierzchni, takich jak mechaniczne, chemiczne i elektrochemiczne na tworze-nie, stabilność i degradację warstw powierzchniowych utworzonych na austenitycznej stali nierdzewnej 304. badano w fizjologicznym płynie Ty rode'a technikami badań powierzchni - cyklicznych krzywych polaryzacyjnych oraz impedancji. Uzyskano pętlę histerezy cyklicznej krzywej polaryzacyjnej, co wskazuje na opóźnienie w repasywacji istniejących wżerów podczas skanowania potencjału w kierunku katodowym. Elektrolityczne polerowanie i czyszczenie ultradźwiękowe poprawia odporność korozyjną poprzez zwiększenie potencjału korozyjnego i potencjału przebicia warstwy pasywnej, jak również potencjału tworzenia się wżerów. Zmiana fraktala powierzchni jest w dobrej zgodności z wynikami uzyskanymi dla wysokościowych współczynników chropowatości z pomiarów AFM.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The purpose of the study was evaluation of corrosion resistance of steel 316L used in cardiologic treatment mainly for vascular stents. The study analysed influence of electrochemical and chemical treatment of the steel surface, including sterilisation with pressurised water steam, on its corrosion characteristics. The tests were performed in artificial blood plasma simulating human blood environment. In order to simulate the conditions present in blood, the samples were subject to exposure in artificial blood plasma at the temperature T = 37±1oC for 30 days. To evaluate the phenomena that take place on the surface of the tested steel, electrochemical impedance spectroscopy was applied. Suggestion of proper variants of surface treatment is of a long-range importance and it will contribute to elaboration of technological conditions with specified parameters of formation of oxide layers on vascular stents.
PL
Celem pracy była ocena odporności korozyjnej stali 316L stosowanej w zabiegach kardiologicznych głównie na stenty naczyniowe. Analizowano wpływ elektrochemicznej i chemicznej obróbki powierzchniowej stali z uwzględnieniem procesu sterylizacji parą wodną pod ciśnieniem na jej właściwości korozyjne. Badania realizowano w sztucznym osoczu symulującym środowisko krwi. W celu zasymulowania warunków występujących w środowisku krwi próbki poddawano ekspozycji w sztucznym osoczu o temperaturze T = 37±1oC przez okres 30. dni. Dla oceny zjawisk zachodzących na powierzchni badanej stali zastosowano metodę elektrochemicznej spektroskopii impedancyjnej (EIS – Electrochemical Impedance Spectroscopy). Zaproponowanie odpowiednich wariantów obróbki powierzchniowej ma perspektywiczne znaczenie i przyczyni się do opracowania warunków technologicznych o sprecyzowanych parametrach wytwarzania powłok tlenkowych na stentach naczyniowych.
Purpose: The purpose of the study was to evaluate corrosion resistance of Wirobond C® alloy after chemical passivation treatment. Methods: The alloy surface undergone chemical passivation treatment in four different media. Corrosion studies were carried out by means of electrochemical methods in saline solution. Corrosion effects were determined using SEM. Results: The greatest increase in the alloy polarization resistance was observed for passive layer produced in Na2SO4 solution with graphite. The same layer caused the highest increase in corrosion current. Generally speaking, the alloy passivation in Na2SO4 solution with graphite caused a substantial improvement of the corrosion resistance. The sample after passivation in Na2SO4 solution without graphite, contrary to others, lost its protective properties along with successive anodic polarization cycles. The alloy passivation in Na3PO4 solution with graphite was the only one that caused a decrease in the alloy corrosion properties. The SEM studies of all samples after chemical passivation revealed no pit corrosion – in contrast to the sample without any modification. Conclusions: Every successive polarization cycle in anodic direction of pure Wirobond C® alloy enhances corrosion resistance shifting corrosion potential in the positive direction and decreasing corrosion current value. The chemical passivation in solutions with low pH values decreases susceptibility to electrochemical corrosion of Co-Cr dental alloy. The best protection against corrosion was obtained after chemical passivation of Wirobond C® in Na2SO4 solution with graphite. Passivation with Na2SO4 in solution of high pH does not cause an increase in corrosion resistance of WIROBOND C. Passivation process increases alloy resistance to pit corrosion.
5
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Celem pracy była ocena odporności korozyjnej drutów wykonanych ze stali nierdzewnej X10CrNi18-8 stosowanych w zabiegach kardiologicznych. Analizowano wpływ umocnienia w procesie ciągnienia oraz modyfikacji powierzchni drutów z uwzględnieniem procesu sterylizacji parą wodną pod ciśnieniem na ich właściwości korozyjne. Badania realizowano w sztucznym osoczu symulującym środowisko krwi. Dla oceny zjawisk zachodzących na powierzchni badanej stali zastosowano metodę elektrochemicznej spektroskopii impedancyjnej (EIS – Electrochemical Impedance Spectroscopy). Zaproponowanie odpowiednich wariantów obróbki powierzchniowej ma perspektywiczne znaczenie i przyczyni się do opracowania warunków technologicznych o sprecyzowanych parametrach wytwarzania powłok tlenkowych na wyrobach medycznych.
EN
This study is aimed at evaluation of corrosion resistance of wires made of stainless steel X10CrNi18-8 used in cardiologic treatment. Analyzed factors included impact of hardening in drawing process and modification of wire surface, involving sterilisation process with pressurized water steam, on their corrosion properties. The tests were performed in artificial blood plasma simulating human blood environment. Electrochemical Impedance Spectroscopy (EIS) was used in order to evaluate phenomena taking place on the surface of the tested steel. Suggestion of proper surface treatment variants is perspective significance and will help to develop technological conditions with specified parameters of oxide coating creation on the surface of medical devices.
6
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Często wymagane jest, aby oprócz skutecznej ochrony przed korozją konstrukcje miały także estetyczny wygląd nałożonych powłok. Niejednokrotnie jest to bardzo trudne, zwłaszcza, gdy wyroby po cynkowaniu narażone są na oddziaływanie czynników atmosferycznych tj. wilgoci czy opadów deszczu. Pomimo faktu, że srebrno błyszcząca powłoka cynkowa z czasem blaknie i staje się szara po kilku miesiącach, naturalne produkty korozji cynku tzw. „biała korozja” są nieakceptowalne przez klientów finalnych. Jednym ze sposobów zabezpieczenia cynkowanych wyrobów przed pojawieniem się pierwszych produktów korozji cynku jest użycie pasywacji. Celem pracy było porównanie efektów zastosowania pasywacji chemicznej i polimerowej oraz wdrożenie najlepszego rozwiązania. Odporność korozyjną powłoki cynkowej oceniono na podstawie testu NSS wg PN-EN ISO 9227 oraz badań w warunkach terenowych (polowych). W celu oceny mikrostruktury powłoki cynkowej oraz pomiaru jej grubości wykonano analizę metalograficzną nałożonych powłok. Nie stwierdzono różnic pomiędzy pasywacją chemiczną i polimerową pod kątem odporności korozyjnej powłoki cynkowej. Z uwagi na aspekt ekonomiczny bardziej zasadnym jest wykorzystanie pasywacji chemicznej do zabezpieczania wyrobów przed tworzeniem się białej korozji.
EN
It is often required that, in addition to effective protection against corrosion, the structures should also have an aesthetic appearance of the applied coatings. It is difficult, especially when products after hot dip galvanizing (HDG) are exposed to weather conditions i.e. moisture or rainfall. Despite the fact, that the silver shiny zinc coating fades with time and becomes gray after a few months, natural zinc corrosion products, so-called „white corrosion”, is unacceptable to final customers. One of the way to protect galvanized products against the appearance of the first zinc corrosion products is passivation. The aim of this work was to compare the effects of chemical and polymer passivation and to implement the best solution. The corrosion resistance of the zinc coating was evaluated on the basis of the NSS test according to PN-EN ISO 9227 and tests in field conditions. The metallographic analysis was performed by assessing the microstructure of the zinc coating and measuring its thickness. There were no differences between chemical and polymer passivation in terms of corrosion resistance of the zinc coating. Due to the economic aspect, it is more reasonable to use chemical passivation to protect products against the formation of white corrosion.
7
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The paper deals with investigations on the influence of the parameters of the electrochemical and chemical treatment of stents made of steel type 00H17N14M2A on their corrosion resistance in constitutional fluids. The influence of the chemical composition of baths used for their electrolytic polishing and chemical passivation on the quality of the surface of the stents and the working parameters of their final treatment were determined, as well as the resistance of polished and passivated stents to pitting corrosion in Tyrode's and chloride solutions.
W pracy przedstawiono wyniki badań odporności na korozję elektrochemiczną drutów wykonanych ze stali nierdzewnej X10CrNi 18-8 przeznaczonych dla protetyki stomatologicznej i chirurgii twarzowo-szczękowej. Testy potencjodynamiczne realizowano w roztworze sztucznej śliny. Dokonano oceny wpływu odkształcenia w procesie ciągnienia oraz modyfikacji powierzchni na właściwości korozyjne drutów. Za pomocą profilometru optycznego przeprowadzono pomiar cech geometrycznych drutów po badaniach korozyjnych.
EN
The study presents the results of electrochemical corrosion resistance tests of wires made of stainless steel X10CrNi 18-8 for prosthodontic and facial and dental surgery. Potentiodynamic tests were performed in artificial saliva solution. The influence of strain in drawing process and surface modification on wire corrosion characteristics were evaluated. Optical profilometer was used for measurement of geometrical features of wires after corrosion tests.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.