Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 15

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  particulate organic matter
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Tidewater glaciers supply large amounts of suspended particulate matter (SPM) and freshwater to fjords and affect oceanographic, sedimentological and biological processes. Our understanding of these processes, is usually limited to the short summer season. Here, we present the results of a one-year-long monitoring of the spatial variability in SPM characteristics in a context of oceanographic and meteorological conditions of a glacial bay next to Hansbreen, a tidewater glacier in Hornsund (southern Spitsbergen). The observed range of SPM concentrations was similar to ranges measured in other sub-polar glaciated fjords, especially in Svalbard. The major source of SPM is the meltwater discharge from the glacier. The maximum water column-averaged SPM concentrations did not correlate with peaks in freshwater discharge and were observed at the beginning of the autumn season, when the fjord water transitioned from stratified to fully mixed. The observed spatiotemporal variations in the total SPM, particulate organic matter (POM) and particulate inorganic matter (PIM) are likely controlled by a combination of factors including freshwater supply, water stratification and circulation, bathymetry, the presence of sea ice, biological productivity and sediment resuspension. During the ablation season, the SPM maximum concentrations were located within the upper water layer, whereas during the winter and spring, the greatest amounts of SPM were concentrated in deeper part. Thus, typical remote sensing-based studies that focus on SPM distributions may not reflect the real SPM levels. POM and PIM concentrations were correlated with each other, during most of the time suggesting that they may have a common source.
PL
Związki organiczne występujące w powietrzu wewnętrz;nym na różnych poziomach stę-żeń mogą stanowić poważną przyczynę problemów zdrowotnych mieszkańców i użytkowników pomieszczeń. Bardzo ważne staje się więc zagadnienie monitoringu obecności związków organicznych, należących do grupy trwałych zanieczyszczeń organicznych (POP).
EN
Organic compounds, present in indoor air, can impair the air, and can be the reason for human health worsening. By reason of this very important is persistent organic pollutants (POP) monitoring.
|
2002
|
tom 11
|
nr 1
EN
Enzymatic decomposition and bacterial utilization of various types of particulate and dissolved substrates was studied during spring-summer period in four lakes of Mazurian Lake District (Northern Poland). We found that seston particles, similarly as dissolved organic matter (DOM), undergo intensive decomposition processes in lake water, but only after their previous colonization by bacteria. In lakes of low or moderate trophic status free-living microorganisms predominated. They preferentially utilized low molecular weight, dissolved organic compounds. Increases in particulate organic matter (POM) content in these environments caused rapid change of substrate exploitation strategy and adaptation of these bacteria to live in particle-attached forms. In lakes of POM and colloidal DOM (CDOM) abundant particle-attached microheterotrophs, although less metabolically active than free-living bacteria, were mainly responsible for secondary production and POM mineralization A mechanisms that permit effective POM exploitation by seston-attached bacteria was overproduction of relatively low active (high Km) enzymes (e.g. aminopeptidase) and/or synthesis of the enzymes (e.g. β-glucosidase or glucosaminidase) that were optimally adapted (low Km) to the environment.
EN
The inherent optical properties (IOPs) of suspended particulate matter and their relations with the main biogeochemical characteristics of particles have been examined in the surface waters of the southern Baltic Sea. The empirical data were gathered at over 300 stations in open Baltic Sea waters as well as in the coastal waters of the Gulf of Gdańsk. The measurements included IOPs such as the absorption coefficient of particles, absorption coefficient of phytoplankton, scattering and backscattering coefficients of particles, as well as biogeochemical characteristics of suspended matter such as concentrations of suspended particulate matter (SPM), particulate organic matter (POM), particulate organic carbon (POC) and chlorophyll a (Chl a). Our data documented the very extensive variability in the study area of particle concentration measures and IOPs (up to two orders of magnitude). Although most of the particle populations encoun- tered were composed primarily of organic matter (av. POM/SPM=ca 0.8), the different particle concentration ratios suggest that the particle composition varied significantly. The relations between the optical properties and biogeochemical parameters of suspended matter were examined. We found significant variability in the constituent-specific IOPs (coefficients of variation (CVs) of at least 30% to 40%, usually more than 50%). Simple best-fit relations between any given IOP versus any constituent concentration parameter also highlighted the significant statistical errors involved. As a result, we conclude that for southern Baltic samples an easy yet precise quantification of particle IOPs in terms of the concentration of only one of the following parameters – SPM, POM, POC or Chl a – is not achievable. Nevertheless, we present a set of best statistical formulas for a rough estimate of certain seawater constituent concentrations based on relatively easily measurable values of seawater IOPs. These equations can be implemented in practice, but their application will inevitably entail effective statistical errors of estimation of the order of 50% or more.
EN
The study determined the numbers and distribution of culturable heterotrophic and proteolytic bacteria and the level of leucine aminopeptidase activity in the water of the Słupia River within the town of Słupsk (Northern Poland). River Słupia is 138.6 km long and flowing into the Baltic Sea. The average water discharge of the river is 15.5 m³ s⁻¹ and its slope is about 1.3% which gives it a mountainous character. The numbers of culturable heterotrophic bacteria was determined on iron-peptone agar (IPA) medium and the numbers of culturable proteolytic bacteria was assayed in IPA medium enriched with gelatin. Potential leucine aminopeptidase activity was carried out with the use of fluorescently labelled model substrate MCA-leucine. The numbers of heterotrophic bacteria ranged between 0.33 to 183.0  10³ cells cm⁻³ (maximum in spring, minimum in winter); the abundance of culturable proteolytic bacteria ranged 0.50 to 31.8  10³ cells cm⁻³ and the maximum was noted in spring, the lowest in summer. The activity of extracellular leucine aminopeptidase ranged from 2.34 to 6.87 μM MCA dm⁻³ h⁻¹ and the highest value was noted in spring while the lowest were noted in winter and summer. The values of bacteriological parameters and of leucine aminopepidase activity tended to be higher below the sewage treatment plant. The bacteriological parameters for River Słupia were compared with the relevant data for other river ecosystems.
|
|
tom 61
|
nr 4
EN
Extracellular enzymes occurring in aquatic environment are heterogeneous in respect to their origin and function, place, where they are located and their activity. They can be divided into mainly ‘bacterial-origin’ enzymes produced by heterotrophic organisms in order to obtain organic carbon, and mostly ‘phytoplankton-bacterial-origin’ enzymes, which are produced by autotrophic and heterotrophic organisms, and are responsible mainly for obtaining inorganic compounds. Enzymes activity provides information about microorganisms present in given environment and about their physiological state. We hypothesize that the patterns (‘fingerprints’) calculated on the basis of activity of several enzymes both mainly ‘bacterial-origin’ and mainly ‘phytoplankton-bacterial-origin’ may be used to characterise lake ecosystems in terms of the physiological structure of aquatic microorganisms present in these lakes. For the study we selected four lakes from Mazurian Lakes District in north-eastern Poland. Three of them were clear-water (lakes: Kuc, Mikołajskie, Tałtowisko) and ranged from oligotrophy to eutrophy, the fourth (Lake Smolak Duży) was slightly acidic (pH 5.2), highly productive and polyhumic. Activity of phosphatase (PA), L-leucine-aminopeptidase (AMP), β-glucosidase (B-Glu), esterase (EST), glucosaminidase (Glu-ami), glucuronidase (Glu-uro) and cellobiohydrolase (Cellob) were measured fluorometrically. The results were normalised and analysis of agglomerative clustering was performed to create an enzyme activity patterns characteristic for lakes. We found out that the enzymatic pattern reflected trophic differences between studied lakes. The patterns (‘fingerprints’) of enzymes were similar for three clear-water lakes, with urease (U–ase), AMP and EST dominating the overall enzymatic activity, but differed substantially for polyhumic lake, in which considerably high PA and saccharolytic enzyme activities were observed. We conclude that the analysis of enzymatic ‘fingerprints’ can be a useful tool to characterise lakes with respect to their trophic status and physiological diversity of microbial assemblages associated with each particular lake.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.