In this article we introduce the difference sequence space m (Δ,φ,p), 0 < p < 1, which is related to the p-normed space lp(Δ) (i.e. bvp). We study its different properties like solidity, symmetricity, completeness etc. We prove some inclusion results and verify its relations with the other sequence spaces.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We prove that every bounded, uniformly separated sequence in a normed space contains a "uniformly independent" subsequence (see definition); the constants involved do not depend on the sequence or the space. The finite version of this result is true for all quasinormed spaces. We give a counterexample to the infinite version in $L_p[0,1]$ for each 0 < p < 1. Some consequences for nonstandard topological vector spaces are derived.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.