Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 7

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  oszacowanie błędu
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Error estimation and adaptivity for nonlinear FE analysis
100%
EN
An adaptive strategy for nonlinear finite-element analysis, based on the combination of error estimation and h-remeshing, is presented. Its two main ingredients are a residual-type error estimator and an unstructured quadrilateral mesh generator. The error estimator is based on simple local computations over the elements and the so-called patches. In contrast to other residual estimators, no flux splitting is required. The adaptive strategy is illustrated by means of a complex nonlinear problem: the failure analysis of a single-edge notched beam. The quasi-brittle response of concrete is modelled by means of a nonlocal damage model.
EN
In this paper, we consider, from a numerical point of view, a two-temperature poro-thermoelastic problem. The model is written as a coupled linear system of hyperbolic and elliptic partial differential equations. An existence result is proved and energy decay properties are recalled. Then we introduce a fully discrete approximation by using the finite element method and the implicit Euler scheme. Some a priori error estimates are obtained, from which the linear convergence of the approximation is deduced under an appropriate additional regularity. Finally, some numerical simulations are performed to demonstrate the accuracy of the approximation, the decay of the discrete energy and the behaviour of the solution depending on a constitutive parameter.
3
100%
EN
In this paper, the two-dimensional linear and nonlinear integral equations of the second kind is analyzed. The homotopy analysis method (HAM) is used for determining the solution of the investigated equation. In this method, a solution is sought in the series form. It is shown that if this series is convergent, its sum gives the solution of the considered equation. The sufficient condition for the convergence of the series is also presented. Additionally, the error of approximate solution, obtained as partial sum of the series, is estimated. Application of the HAM is illustrated by examples.
4
100%
EN
This article aims at giving a simplified presentation of a new adaptive semi-Lagrangian scheme for solving the (1 + 1)- dimensional Vlasov-Poisson system, which was developed in 2005 with Michel Mehrenberger and first described in (Campos Pinto and Mehrenberger, 2007). The main steps of the analysis are also given, which yield the first error estimate for an adaptive scheme in the context of the Vlasov equation. This article focuses on a key feature of our method, which is a new algorithm to transport multiscale meshes along a smooth flow, in a way that can be said optimal in the sense that it satisfies both accuracy and complexity estimates which are likely to lead to optimal convergence rates for the whole numerical scheme. From the regularity analysis of the numerical solution and how it gets transported by the numerical flow, it is shown that the accuracy of our scheme is monitored by a prescribed tolerance parameter \epsilon which represents the local interpolation error at each time step. As a consequence, the numerical solutions are proved to converge in L\infty towards the exact ones as \epsilon and \delta t tend to zero, and in addition to the numerical tests presented in (Campos Pinto and Mehrenberger, 2007), some complexity bounds are established which are likely to prove the optimality of the meshes.
EN
A class of third order singularly perturbed delay differential equations of reaction diffusion type with an integral boundary condition is considered. A numerical method based on a finite difference scheme on a Shishkin mesh is presented. The method suggested is of almost first order convergent. An error estimate is derived in the discrete norm. Numerical examples are presented, which validate the theoretical estimates.
EN
The purpose of the paper is to find an approximate solution of the two-dimensional nonlinear fuzzy Volterra integral equation, as homotopy analysis method (HAM) is applied. Studied equation is converted to a nonlinear system of Volterra integral equations in a crisp case. Using HAM we find approximate solution of this system and hence obtain an approximation for the fuzzy solution of the nonlinear fuzzy Volterra integral equation. The convergence of the proposed method is proved. An error estimate between the exact and the approximate solution is found. The validity and applicability of the HAM are illustrated by a numerical example.
EN
The paper deals with initial boundary value problems of the Dirichlet type for system of quasilinear functional differential equations. We investigate weighted difference methods for these problems. A complete convergence analysis of the considered difference methods is given. Nonlinear estimates of the Perron type with respect to functional variables for given functions are assumed. The proof of the stability of difference problems is based on a comparison technique. The results obtained here can be applied to differential integral problems and differential equations with deviated variables. Numerical examples are presented.
PL
Praca dotyczy zagadnień początkowo brzegowych typu Dirichlet’a dla układów quasiliniowych równań różniczkowo-funkcyjnych. Zamieszczona jest konstrukcja ważonych metod różnicowych dla wyjściowych zagadnień różniczkowych oraz przeprowadzona jest pełna analiza zbieżności. Niezbędne założenia obejmują oszacowania typu Perrona dla funkcji danych względem argumentów funkcyjnych. Dowód stabilności metody różnicowej opiera się na technice porównawczej. Teoretyczne rezultaty zobrazowane są na przykładzie całkowego równania różniczkowego oraz równań różniczkowych z odchylonym argumentem.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.