Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  orthogonal matrices
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Two-level Cretan matrices constructed using SBIBD
100%
|
|
tom 3
|
nr 1
EN
Two-level Cretan matrices are orthogonal matrices with two elements, x and y. At least one element per row and column is 1 and the other element has modulus ≤ 1. These have been studied in the Russian literature for applications in image processing and compression. Cretan matrices have been found by both mathematical and computational methods but this paper concentrates on mathematical solutions for the first time. We give, for the first time, families of Cretan matrices constructed using the incidence matrix of a symmetric balanced incomplete block design and Hadamard related difference sets.
2
Content available remote SAT as a Programming Environment for Linear Algebra
100%
EN
In this paper we pursue the propositional calculus and the SATisfiability solvers as a powerful declarative programming environment that makes it possible to create and run the propositional declarative programs for computational tasks in various areas of mathematics. We report some experimental results on our application of the propositional SATisfiability environment to computing some simple orthogonal matrices and the orders of some orthogonal groups. Some encouraging (and not very encouraging) experiments are reported for the proposed propositional search procedures using off-the-shelf general-purpose SAT solvers. Our new software toolkit SAT4Alg is announced.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.