Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  organic loading rate
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In wastewater treatment, aerobic granular sludge (AGS) technology is a relatively new alternative to the activated sludge method. The biogranulation of biomass ensues when appropriate environmental conditions in a reactor are ensured, and one of the factors determining this is the organic loading rate (OLR). As a literature review suggests, the optimal values of OLR for AGS technology are in the range of 2.50–7.50 g COD/(dm3∙d), the aim of the work detailed here was to evaluate the impact of powdered ceramsite on biogranulation in two Granular Sequencing Batch Reactors (GSBRs) in which OLR was equal to just 2.10 g COD/(dm3∙d) (R1) and 1.0 g COD/(dm3∙d) (R2). The research was carried out in laboratory scale with using synthetic wastewater containing different concentration of organic compounds. In the course of the research, a more intensive process of biogranulation was noted in reactor R1, and mean diameters of granules on the last day of experimentation were 962 and 274 µm for R1 and R2, respectively. While the organic loading rate equal to 2.10 g COD/(dm3∙d) could allow granule formation, the results also pointed that lower food-to-microorganism (F/M) ratios favour biogranulation. This parameter was indirectly affected by the application of powdered ceramsite, because the powdered material improved the sludge sedimentation properties (average values of SVI30 being 30.1±12.8 and 36.9±10.9 cm3/g). The result of this was more-limited leaching of biomass from reactors (with average values for MLVSS at 4.37±1.23 and 3.03±0.67 g/dm3).
EN
The discharge of wastewater containing both high salinity and high organic content without prior treatment is detrimental to aquatic life and water hygiene. In order to integrate the advantages of membrane treatment and biological treatment, and exert the phosphorus removal efficiency of dewatered alum sludge, in this study, an aerobic membrane reactor based on dehydrated alum sludge was used to treat mustard tuber wastewater with salinity of 6.8-7.3 % under the conditions of 30 °C, 20 kPa trans-membrane pressure (TMP) and chemical oxygen demand (COD) of 3300-3900 mg/L. Three replicate reactors were applied to assess the operational performance under different organic loading rate (OLR). The results showed that all reactors were effective in removing COD, ammonia nitrogen (NH4+-N) and soluble phosphate (SP) under the conditions of 30 °C and 20 kPa of TMP. Meanwhile, the effluent concentration of COD, NH4+-N and SP all increased while OLR was changed from 1.0 to 3.0 kg COD/m3/day, and the effluent COD and NH4+-N concentration except for SP could reach the B-level of Chinese “Wastewater quality standards for discharge to municipal sewers” when OLR was less than 3.0 kg COD/m3/day. This indicates that dewatered alum sludge-based aerobic membrane reactor is a promising bio-measure for treating high salinity wastewater.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.