In theory, the optimal strategy for all kinds of games against an intelligent opponent is the Minimax strategy. Minimax assumes a perfectly rational opponent, who also takes optimal actions. However, in practice, most human opponents depart from rationality. In this case, the best move at any given step may not be one that is indicated by Minimax and an algorithm that takes into consideration human imperfections will perform better. In this paper, we show how modeling an opponent and subsequent modification of the Minimax strategy that takes into account that the opponent is not perfect, can improve a variant of the Tic-Tac-Toe game and and the game of Bridge. In Bridge we propose a simple model, in which we divide players into two classes: conservative and risk-seeking. We show that knowing which class the opponent belongs to improves the performance of the algorithm.
PL
Algorytmy grające w gry często używają strategii Minimax. Algorytm Minimax zakłada perfekcyjność przeciwnika, który wybiera zawsze najlepsze ruchy. Gracze jednakże mogą nie działać całkiem racjonalnie. Algorytm, który weźmie to pod uwagę może dawać lepsze wyniki niż Minimax. W pracy przedstawiono jak modelowanie gracza i modyfikacje algorytmu Minimax mogą poprawić wyniki w grze kółko-krzyżyk i w brydżu. W brydżu zaproponowany został prosty model, dzielący graczy na dwie kategorie - konserwatywny i ryzykowny. Eksperymenty pokazały, że wiedza, do której klasy graczy należy przeciwnik, poprawia działanie algorytmu.
In this paper, a new concept of invexity for locally Lipschitz vector-valued functions is introduced, called V-r-type I functions. The generalized Karush-Kuhn-Tucker sufficient optimality conditions are proved and duality theorems are established for a non-smooth multiobjective optimization problems involving K-r-type I functions with respect to the same function η.
The main purpose of the paper is to present the relations between the different cost factors of the inventory management systems, and the context between the order quantities and the cost level. The theoretical approach of the model assumes a deterministic operational environment with planned shortages. We make the examination of the contexts by applying the ceteris paribus principle; we change only one cost factor from among the initial conditions at once and examine its effect on the cost level. By using the economic order quantity with the planned shortage model, we can define the optimal order quantity, along which our stock management can be guaranteed by the most favourable cost level. The optimisation of the inventory level and the inventory management expenses together means an important factor in the competitiveness of the company. During the definition of the optimal inventory level of purchased parts, the purchasing and stock holding costs, and also the consequence of shortages play an important role. The presentation of the specific expense factors in each other’s function, and the representation of the onetime order expenses show their proportion compared to each other and the effect of their change on the total cost, and define the opportunities of the optimisation. The significance of the model is that it represents the level line of costs, the movement of the different cost factors in relation to others and their operating mechanism. Thus, it facilitates the representation of costs and the definition of the direction of optimisation.
The transportation problem is a special class of linear programming techniques that were devolved for linear function and constraints. This paper acquaints the weighted arithmetic mean algorithm for optimality. After studying and analyzing the algorithm, we can perform the special type of case rather than the Non-Degenerate transportation problem. At the optimality level, the entire transportation problem will consider the least cost of the cost matrix. This paper explores the Degenerate transportation problem of seeking optimality and enhances the problem to be optimal or near to optimal solution by assigning the weights to the cost matrix.
PL
Zagadnienie transportowe to specjalne zadanie programowania liniowego, dla którego zostały opracowane dedykowane algorytmy. W tej pracy zaproponowano dwa podejścia do zagadnienia transportowego. W pierwszym podejściu podajemy algorytm średniej ważonej. Jest on przeznaczony dla początkowego podstawowego rozwiązania dopuszczalnego. W drugim podejściu wyjaśniamy zastosowanie wag do osiągnięcia optymalności. Wagi, to dodatkowe parametry, które są ujęte w macierzy kosztu. Po przestudiowaniu i przeanalizowaniu algorytmu analizujemy specjalny przypadek zdegenerowany, dla którego uzyskujemy rozwiązanie optymalne lub bliskie optymalnemu.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.