Zaprezentowano heurystyczną metodę optymalizującą liczbę pobudzeń testujących analogowe układy elektroniczne. Algorytm symulowanego wyżarzana został użyty jako silnik poszukiwania pobudzenia wejściowego. Wysokiej jakości test powinien mieć minimalną liczbę częstotliwości pobudzeń testowych na wejściu przy wysokiej testowalności i diagnozowalności analogowych układów elektronicznych. Przedstawione rozwiązanie pozwala odseparować układy uszkodzone od nieuszkodzonych (test go/no-go) oraz. lokalizować uszkodzone elementy. Algorytm został zaimplementowany w układzie Virtex-4 ML 403, co pozwala zastosować wymienioną platformę jako urządzenie niezależne (standalone).
EN
This paper presents heuristic optimization method to analog circuit fault test frequency selection. Simulated annealing as a search engine is applied to find stimuli excitations. The high quality test requires minimum number of stimuli frequencies, high testability and diagnosability. The algorithm produces excitations that separates faulty and healthy circuits (go/no go test) and locates a faulty element (diagnosability) in a cirucit under test. Proposed approach is verified by simulated annealing algorithm with weighted energy function. Moreover, all algorithms are implemented and tested on the Xilinx Virtex-4 ML403 PPC Platform as a standalone application.
W pracy omówiono zagadnienie optymalizacji pobudzeń dla celów identyfikacji parametrów modeli kompartmentowych systemów farmakokinetycznych opisanych w kategoriach zmiennych stanu. Przedstawiono pobudzenia optymalne zaprojektowane według kryterium A-optymalności. Zaprojektowane pobudzenia optymalne, w obrębie klasy pobudzeń o ograniczonej energii, zapewniają maksymalną osiągalną dokładność estymat parametrów. W farmakokinetyce nałożenie ograniczenia na energię pobudzenia konieczne jest w przypadku leków, których szybkie podawanie powoduje występowanie skutków ubocznych.
EN
Optimal input design for parameter estimation of compartmental state-space models of pharmacokinetic systems is presented in the paper. The results presented were obtained for two-compartmental model of procainamide pharmacokinetics. In the paper A-optimality criterion was utilised. A-optimal inputs presented, in the equienergy class of optimal inputs, ensure the best achievable accuracy of parameter estimates. The optimisation procedure delivered optimal inputs of non-positive values presented in Fig. 2. In order to ensure the applicability of the optimal inputs in drug delivery the additional constraint, lower bound was imposed on the optimal inputs. The applicable optimal inputs presented in Fig. 3 were used for parameter estimation. In the Tab. 2 the parameter estimates as well as their accuracies are presented.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The parametric approach to the identification of the SISO state space compartmental models of pharmacokinetic systems is presented. The model structure is formulated basing on the a priori knowledge. The initial parameter estimates are calculated on the base of the output measurements collected during the intuitive experiment. They are used for designing the optimal input, which ensures the best accuracy of the parameter estimates. The sensitivity criterion is adopted and presented in terms of nonlinear programming problem with constraints. Two classes of optimal inputs are considered: equidose and equienergy inputs. The results obtained with optimal and standard inputs are presented and compared.
The paper considers the problem of active fault diagnosis for discrete-time stochastic systems over an infinite time horizon. It is assumed that the switching between a fault-free and finitely many faulty conditions can be modelled by a finite-state Markov chain and the continuous dynamics of the observed system can be described for the fault-free and each faulty condition by non-linear non-Gaussian models with a fully observed continuous state. The design of an optimal active fault detector that generates decisions and inputs improving the quality of detection is formulated as a dynamic optimization problem. As the optimal solution obtained by dynamic programming requires solving the Bellman functional equation, approximate techniques are employed to obtain a suboptimal active fault detector.
The optimal design of excitation signal is a procedure of generating an informative input signal to extract the model parameters with maximum pertinence during the identification process. The fractional calculus provides many new possibilities for system modeling based on the definition of a derivative of noninteger-order. A novel optimal input design methodology for fractional-order systems identification is presented in the paper. The Oustaloup recursive approximation (ORA) method is used to obtain the fractional-order differentiation in an integer order state-space representation. Then, the presented methodology is utilized to solve optimal input design problem for fractional-order system identification. The fundamental objective of this approach is to design an input signal that yields maximum information on the value of the fractional-order model parameters to be estimated. The method described in this paper was verified using a numerical example, and the computational results were discussed.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.