Optimizing CPS behavior in terms of energy consumption can have a significant impact on system reliability. The environment influences the system's behavior, and neglecting the environmental behavior has indirect negative impact on optimizing the system's behavior. In this work, to increase the system's flexibility, the behavior of the environment is modeled dynamically to apply the disorderliness of its behavior. The resulting models are formally verified. By examining the past environmental behavior and predicting its future behavior, energy optimization is done more dynamically. The verification results acquired using a UPPAAL-SMC show that the optimization of system behavior by predicting the environmental behavior has been successful. Our approach is demonstrated using a case study within an I4 setting.
All electric powered machines offer the possibility of extracting information and calculating Key Performance Indicators (KPIs) from the electric current signal. Depending on the time window, sampling frequency and type of analysis, different indicators from the micro to macro level can be calculated for such aspects as maintenance, production, energy consumption etc. On the micro-level, the indicators are generally used for condition monitoring and diagnostics and are normally based on a short time window and a high sampling frequency. The macro indicators are normally based on a longer time window with a slower sampling frequency and are used as indicators for overall performance, cost or consumption. The indicators can be calculated directly from the current signal but can also be based on a combination of information from the current signal and operational data like rpm, position etc. One or several of those indicators can be used for prediction and prognostics of a machine’s future behavior. This paper uses this technique to calculate indicators for maintenance and energy optimization in electric powered machines and fleets of machines, especially machine tools.
PL
Wszystkie urządzenia elektryczne oferują możliwość wydobywania informacji i obliczania Kluczowych Wskaźników Efektywności (ang. Key Performance Indicators, KPI) z sygnału prądu elektrycznego. W zależności od okna czasowego, częstotliwości próbkowania i rodzaju analizy, różne wskaźniki od mikro do makro poziomu, można obliczyć dla takich aspektów jak utrzymanie ruchu, produkcja, zużycie energii itp. Na poziomie mikro wskaźniki są powszechnie stosowane do monitorowania stanu i diagnostyki oraz zazwyczaj są oparte na krótkim oknie czasowym i mają dużą częstotliwość próbkowania. Wskaźniki makro są zwykle oparte na dłuższym oknie czasowym z wolniejszą częstotliwością próbkowania i są używane jako wskaźniki dla ogólnej wydajności, kosztu lub zużycia. Wskaźniki można obliczyć bezpośrednio z sygnału prądu elektrycznego, ale mogą być one również oparte na połączeniu informacji z sygnału prądu elektrycznego i danych operacyjnych, takich jak obroty na minutę (ang. Revolutions Per Minute, RPM), pozycja itp. Jeden lub kilka z tych wskaźników można wykorzystać do przewidywania i prognozowania przyszłego zachowania maszyny. W niniejszym artykule wykorzystano tę technikę do obliczania wskaźników utrzymania ruchu i optymalizacji energii w maszynach elektrycznych i flotach maszyn, zwłaszcza obrabiarek.
The building sector offers the largest potential for a significant reduction of greenhouse gas emissions. Based on own preliminary investigations for the State of Bavaria, a complete renovation of the building envelope of the current residential building stock would result in a reduced demand for final thermal energy for space heating and domestic hot water by about 70 %. The present study analyzes different existing reference buildings and reference methods. Based on a general literature review, specific criteria will be developed for reference models to represent the thermal energy consumption of the residential building stock for the regional domain under investigation. The objective is to represent the building stock with a limited amount of reference buildings. The method for the development of a reference building will be shown exemplarily for one category.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.