Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  on-line algorithm
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available On-line 𝓟-coloring of graphs
100%
EN
For a given induced hereditary property 𝓟, a 𝓟-coloring of a graph G is an assignment of one color to each vertex such that the subgraphs induced by each of the color classes have property 𝓟. We consider the effectiveness of on-line 𝓟-coloring algorithms and give the generalizations and extensions of selected results known for on-line proper coloring algorithms. We prove a linear lower bound for the performance guarantee function of any stingy on-line 𝓟-coloring algorithm. In the class of generalized trees, we characterize graphs critical for the greedy 𝓟-coloring. A class of graphs for which a greedy algorithm always generates optimal 𝓟-colorings for the property 𝓟 = K₃-free is given.
2
Content available remote An algorithm for 1-space bounded cube packing
75%
EN
In this paper, we present a 1-space bounded cube packing algorithm with asymptotic competitive ratio 10.872.
3
Content available remote A survey of hard-to-color graphs for off-line and on-line model of vertex coloring
63%
EN
In the paper we review the most popular on-line and off-line graph coloring algorithms. For each algorithm we give: short description. performance guarantee, the smallest HC and slightly HC graphs, positive cases and negative cases. Finally, we give the smallest benchmark for off-line sequential algorithms and the smallest weak benchmark for on-line algorithms.
EN
An on-line algorithm that uses an adaptive learning rate is proposed. Its development is based on the analysis of the convergence of the conventional gradient descent method for three-layer BP neural networks. The effectiveness of the proposed algorithm applied to the identification and prediction of behavior of non-linear dynamic systems is demonstrated by simulation experiments.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.