A new property called Pβ-connectedness is introduced which is stronger than connectedness and equivalent to pre-connectedness. The properties of this notion are explored and its relationship with other forms of connectedness, for example hyperconnectedness etc. are discussed. Locally pre-indiscrete spaces are defined as the spaces in which pre-open sets are closed. In such spaces connectedness becomes equivalent to pre-connectedness and hence to Pβ-connectedness, and semi-connectedness becomes equivalent to Pβ-connectedness. The notion of locally Pβ-connected space is introduced. The behavior of Pβ-connectedness under several types of mappings is investigated. An intermediate value theorem is obtained.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.