Recently, many research works have focused on fractional order systems and their approximation methods. It has been shown to be a useful tool for enhancing plant dynamics in terms of time and frequency performance. In this paper we propose a new approach for comparing between the different approximations methods of fractional order systems and disturbance rejection in PID control of DC motor by fractionalizing an integer order derivative operator in the original integer system. The implementation of the fractionalized terms is realized by mean of the well established approximation methods and in order to determine the best method, the responses of original integer system are compared to those of fractionalized systems. Illustrative simulations examples show that the fractionalization approach give the best decision (selected method) ,a good tool for comparison between different approximation methods and it give the good rejection of disturbances in PID control of DC motor . This approach can also be generalized to others numerical approximation methods and it can also be used in the area of systems control.
PL
Ostatnio wiele prac badawczych koncentrowało się na systemach rzędu ułamkowego i metodach ich aproksymacji. Wykazano, że jest to przydatne narzędzie do zwiększania dynamiki instalacji pod względem wydajności czasowej i częstotliwościowej. W tym artykule proponujemy nowe podejście do porównywania różnych metod aproksymacji systemów ułamkowego rzędu i odrzucania zakłóceń w sterowaniu PID silnika prądu stałego poprzez frakcjonowanie operatora pochodnej rzędu całkowitego w oryginalnym układzie całkowitym. Implementacja wyrazów ułamkowych jest realizowana za pomocą dobrze znanych metod aproksymacyjnych iw celu wyznaczenia najlepszej metody porównuje się odpowiedzi oryginalnego układu całkowitoliczbowego z odpowiedziami układów ułamkowych. Ilustracyjne przykłady symulacyjne pokazują, że podejście frakcyjne daje najlepszą decyzję (wybrana metoda), jest dobrym narzędziem do porównywania różnych metod aproksymacyjnych i zapewnia dobre odrzucanie zakłóceń w regulacji PID silnika prądu stałego. Podejście to można również uogólnić na inne metody aproksymacji numerycznej, a także można je stosować w obszarze sterowania systemami.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The paper proposes a new model-based optimization approach to improve the clinical efficiency of compensatory insulin bolus treatment in diabetic patients, aiming to mitigate the consequences of diabetes. The most important contribution of this paper is a novel methodology for determining the optimal parameters of insulin treatment, namely the size and timing of insulin boluses, to effectively compensate for carbohydrate intake. This concept can be seen as the so-called optimal model-based bolus calculator. The presented theoretical framework deals with the problem of optimal disturbance rejection in impulsive systems by minimizing an integral quadratic cost function. The methodology considers a personalized empirical transfer function model with static gains and time constants as the only parameters assumed to be known, making the bolus calculator more straightforward to implement in clinical practice. Contrary to other techniques, the proposed methodology considers impulsive insulin administration in the form of boluses, which is more feasible than continuous infusion. In contrast to the conventional bolus calculator, the proposed algorithm allows for maximizing therapy performance by optimizing the relative time of insulin bolus administration with respect to carbohydrate intake. Another feature to highlight is that the solution of the optimization problem can be obtained analytically, hence no numerical iterative solvers are required. Additionally, the continuous-time domain approach allows for a much finer adjustments of the insulin administration timing compared to discrete-time models. The proposed approach was validated in an in-silico study, which demonstrated the importance of systematically determined insulin-carbohydrate ratio and the relative delay between disturbance and its compensation. The results showed that the proposed optimal bolus calculator outperforms the traditional suboptimal formula.
The paper describes a modification to the recently developed plug-in direct particle swarm repetitive controller (PDPSRC) for the sine-wave constant-amplitude constant-frequency (CACF) voltage-source inverter (VSI). The original PDPSRC algorithm assumes that the particle swarm optimizer (PSO) takes into account a performance index defined over the whole reference signal period. Each particle stores all the samples of the control signal, e.g. α = 200 samples for a controller working at 10 kHz and the reference frequency equal to 50 Hz. Therefore, the fitness landscape (i.e. the performance index) is -dimensional ( D), which makes optimization challenging. That solution can be categorized as the single-swarm one. It has been previously shown that the swarm controller does not suffer from long-term stability issues encountered in the classic iterative learning controllers (ILC). However, the convergence of the swarm has to be kept at a relatively low rate to enable successful exploitation in the D search space, which in turn results in slow responsiveness of the PDPSRC. Here a multi-swarm approach is proposed in which we divide a dynamic optimization problem (DOP) among less dimensional swarms. The reference signal period is segmented into shorter intervals and the control signal is optimized in each interval independently by separate swarms. The effectiveness of the proposed approach is illustrated with the help of numerical experiments on the CACF VSI with an output LC filter operating under nonlinear loads.
An enhancement to the previously developed repetitive neurocontroller (RNC) is discussed and investigated in the paper. Originally, the time-base generator (TBG) has been used to produce the only input signal for the neural approximator. The resulting search space makes the dynamic optimization problem (DOP) of shaping the control signal solvable with the help of a function approximator such as the feed-forward neural network (FFNN). The plant under consideration, i.e. a constant-amplitude constant-frequency voltage-source inverter (CACF VSI) with an output LC filter, is assumed to be equipped with the disturbance load current sensor to enable implementation of the disturbance feed-forward (pDFF) path as a part of the non-repetitive subsystem acting in the along the pass p-direction. An investigation has been undertaken to explore potential benefits of using this signal also as an additional input for the RNC to augment the approximation space and potentially enhance the convergence rate of the real-time search process. It is numerically demonstrated in the paper that the disturbance feed-forward path active in the pass-to-pass k-direction (kDFF) improves the dynamics of the repetitive part as well indeed.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.