Arm-Z to koncepcja hiperredundantnego manipulatora robotycznego składającego się z przystających modułów o jednym stopniu swobody (1-DOF) i realizującego (prawie) dowolne ruchy w przestrzeni. Zasadnicze zalety Arm-Z to: ekonomizacja (dzięki masowej produkcji identycznych elementów) oraz odporność na awarie (po pierwsze - zepsute moduły mogą być łatwo zastąpione, po drugie - nawet gdy jeden lub więcej modułów ulegnie awarii - manipulator taki może ciągle wykonywać, prawdopodobnie w stopniu ograniczonym, zakładane zadania). Podstawową wadą systemu Arm-Z jest jego nieintuicyjne, bardzo trudne sterowanie. Innymi słowy, połączenie koncepcji nietrywialnego modułu z formowaniem praktycznych konstrukcji oraz sterowanie ich rekonfiguracją (transformacją ze stanu A do B) są bardzo złożone obliczeniowo. Mimo to, prezentowane podejście jest racjonalne, zważywszy powszechną dostępność wielkich mocy obliczeniowych w kontraście z wysokimi kosztami i „delikatnością” niestandardowych rozwiązań i urządzeń. W artykule nakreślono ogólną koncepcję manipulatora Arm-Z i zaprezentowano wstępne prace zmierzające do wykonania prototypu.
EN
Arm-Z is a concept of a robotic manipulator comprised of linearly joined congruent modules with possibility of relative twist (1 DOF). The advantages of Arm-Z are: economization (mass-production) and robustness (modules which failed can be replaced, also if some fail the system can perform certain tasks). Non-intuitive and difficult control are the disadvantages of Arm-Z. In other words, the combination of non-trivial module shape with forming of practical modular structures and their control (from state A to B) is computationally expensive. However, due to availability of modern computational power, proposed here approach is rational and competitive, especially considering the high cost and sensitivity of non-standard solutions. This paper outlines the general concept of Arm-Z manipulator and presents preliminary work towards making a proof-of-the-concept prototype.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Due to its attractive mechanical properties, aluminum 2024 is widely used in aircraft manufacturing industries, especially as fiber metal laminates, such as GLARE. In the present work, a series of experiments for different stress triaxialities are used to study the ductile damage of Al 2024 considering continuum damage mechanics (CDM). Stress triaxiality is produced using notched specimens. The main objective of the present study is to predict the local equivalent plastic strain to fracture and introducing a relation which describes the effect of stress triaxiality factor (TF) on it in the medium range of stress triaxiality. Hence, a nonlinear damage model is utilized for Al 2024 and its parameters are determined by an experimental/numerical/optimization procedure using tensile test on plain specimens. The experiments showed that for large notch specimens (Al-NL) and medium notch samples (Al-NM) fracture started from the center of the notch root of the specimens, whereas for small notched specimens (Al-NS) the failure initiated from the notch root surface. Finite element simulations are performed using the presented nonlinear damage model and are compared with the experimental data. Results show that the proposed damage model can predict the damage evolution for different stress triaxialities.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.