The adaptive optics (AO) technology has become a valuable diagnostic tool in vision research for studying retinal microscopic structure and function. It is an infrared adaptive optics retinal camera that allows non-invasive visualization of cone photoreceptor cells, the retinal vessel wall and lumen diameter, nerve fibers, and structure of lamina cribrosa, that remain invisible with other current diagnostic techniques. The AO technology may provide information about the pathologic changes in the retina, even in the absence of structural or functional abnormalities in the current diagnostic imaging. The rtx1TM (Imagine Eyes, France) is the only AO imaging device that has received regulatory clearance for ophthalmic examinations in multiple countries. In this article we present a brief overview of AO development, and its evolving range of applications in ophthalmic diagnostics.
PL
Technologia optyki adaptywnej (AO, adaptive optics) stała się w ostatnim czasie cennym narzędziem diagnostycznym w badaniach nad mikrostrukturą i funkcją siatkówki. Wykorzystując światło z zakresu bliskiej podczerwieni, kamera optyki adaptywnej umożliwia nieinwazyjne obrazowanie fotoreceptorów (głównie czopków), ściany i światła naczyń siatkówki, włókien nerwowych oraz struktur blaszki sitowej, które trudno uwidocznić za pomocą innych, stosowanych obecnie technik. Technologia AO może dostarczyć informacji o patologicznych zmianach w siatkówce, nawet gdy brakuje jakichkolwiek odchyleń od normy w obrazowych badaniach strukturalnych lub funkcjonalnych. Obecnie aparat rtx1TM (Imagine Eyes, Francja) jest jedynym urządzeniem z kamerą optyki adaptywnej dopuszczonym do badań okulistycznych w wielu krajach. W niniejszym artykule przedstawiamy krótki przegląd rozwoju technologii optyki adaptywnej oraz stale zmieniające się możliwości jej zastosowania w diagnostyce okulistycznej.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The accurate segmentation of the retinal vessel tree has become the prerequisite step for automatic ophthalmological and cardiovascular diagnosis systems. Aside from accuracy, robustness and processing speed are also considered crucial for medical purposes. In order to meet those requirements, this work presents a novel approach to extract blood vessels from the retinal fundus, by using morphology-based global thresholding to draw the retinal venule structure and centerline detection method for capillaries. The proposed system is tested on DRIVE and STARE databases and has an average accuracy of 95.88% for single-database test and 95.27% for the cross-database test. Meanwhile, the system is designed to minimize the computing complexity and processes multiple independent procedures in parallel, thus having an execution time of 1.677 s per image on CPU platform.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In the last years, image processing has been an important tool for health care. The analysis of retinal vessel images has become crucial to achieving a better diagnosis and treatment for several cardiovascular and ophthalmological deceases. Therefore, an automatic and accurate procedure for retinal vessel and optic disc segmentation is essential for illness detection. This task is extremely hard and time-consuming, often requiring the assistance of human experts with a high degree of professional skills. Several retinal vessel segmentation methods have been developed with satisfactory results. Nevertheless, most of such techniques present a poor performance mainly due to the complex structure of vessels in retinal images. In this paper, an accurate methodology for retinal vessel and optic disc segmentation is presented. The proposed scheme combines two different techniques: the Lateral Inhibition (LI) and the Differential Evolution (DE). The LI scheme produces a new image with enhanced contrast between the background and retinal vessels. Then, the DE algorithm is used to obtain the appropriate threshold values through the minimization of the cross-entropy function from the enhanced image. To evaluate the performance of the proposed approach, several experiments over images extracted from STARE, DRIVE, and DRISHTI-GS databases have been conducted. Simulation results demonstrate a high performance of the proposed scheme in comparison with similar methods reported in the literature.
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Retinal images play an important role in the early diagnosis of diseases such as diabetes. In the present study, an automatic image processing technique is proposed to segment retinal blood vessels in fundus images. The technique includes the design of a bank of 180 Gabor filters with varying scale and elongation parameters. Furthermore, an optimization method, namely, the imperialism competitive algorithm (ICA), is adopted for automatic parameter selection of the Gabor filter. In addition, a systematic method is proposed to determine the threshold value for reliable performance. Finally, the performance of the proposed approach is analyzed and compared with that of other approaches on the basis of the publicly available DRIVE database. The proposed method achieves an area under the receiver operating characteristic curve of 0.953 and an average accuracy of up to 0.9392. Thus, the results show that the proposed method is well comparable with alternative methods in the literature.
5
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Spatio-Temporal Optical Coherence Tomography (STOC-T) is a novel imaging technique using light with controlled spatial and temporal coherence. Retinal images obtained using the STOC-T system maintain high resolution in all three dimensions, on a sample of about 700 μm, without the need for mechanical scanning. In the present work, we use known data processing algorithms for optical coherence tomography angiography (OCTA) and modify them to improve the rendering of the vasculature in the human retina at different depths by introducing the angio STOC-T method. The algorithms are primarily sensitive to the strong signal phase variance corresponding to the appearance of a wide Doppler band in STOC-T signals obtained for millisecond exposure times. After using STOC-T angiography, we can render high contrast images of the choroid.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.