Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  obrazowanie motoryczne
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Motor imagery (MI) decoding is the core of an intelligent rehabilitation system in brain computer interface, and it has a potential advantage by using source signals, which have higher spatial resolution and the same time resolution compared to scalp electroencephalography (EEG). However, how to delve and utilize the personalized frequency characteristic of dipoles for improving decoding performance has not been paid sufficient attention. In this paper, a novel dipole feature imaging (DFI) and a hybrid convolutional neural network (HCNN) with an embedded squeeze-and-excitation block (SEB), denoted as DFI-HCNN, are proposed for decoding MI tasks. EEG source imaging technique is used for brain source estimation, and each sub-band spectrum powers of all dipoles are calculated through frequency analysis and band division. Then, the 3D space information of dipoles is retrieved, and by using azimuthal equidistant projection algorithm it is transformed to a 2D plane, which is combined with nearest neighbor interpolation to generate multi sub-band dipole feature images. Furthermore, a HCNN is designed and applied to the ensemble of sub-band dipole feature images, from which the importance of sub-bands is acquired to adjust the corresponding attentions adaptively by SEB. Ten-fold cross-validation experiments on two public datasets achieve the comparatively higher decoding accuracies of 84.23% and 92.62%, respectively. The experiment results show that DFI is an effective feature representation, and HCNN with an embedded SEB can enhance the useful frequency information of dipoles for improving MI decoding.
EN
This paper explores the parallel collaboration of multimodal physiological signals, combining eye tracker output signals, motor imagery, and error-related potentials to control a computer mouse. Specifically, a parallel working mechanism is implemented in the decision layer, where the eye tracker manages cursor movements, and motor imagery manages click functions. Meanwhile, the eye tracker output signals are integrated with electroencephalography data to detect the idle state for asynchronous control. Additionally, error-related potentials evoked by visual feedback, are detected to reduce the cost of error corrections. To efficiently collect data and provide continuous evaluations, we performed offline training and online testing in the designed paradigm. To further validate the practicability, we conducted online experiments on the real-world computer, focusing on a scenario of opening and closing files. The experiments involved seventeen subjects. The results showed that the stability of the eye tracker was optimized from 67.6% to 95.2% by the designed filter, providing the support for parallel control. The accuracy of motor imagery conducted simultaneously with fixations reached 93.41 ± 2.91%, proving the feasibility of parallel control. Furthermore, the real-world experiments took 45.86 ± 14.94 s to complete three movements and clicks, and showed a significant improvement compared to the baseline experiment without automatic error correction, validating the practicability of the system and the efficacy of error-related potentials detection. Moreover, this system freed users from the stimulus paradigm, enabling a more natural interaction. To sum up, the parallel collaboration of multimodal physiological signals is novel and feasible, the designed mouse is practical and promising.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.