Blood flow in an asymmetrically dilated fusiform artery has been investigated under pulsatile inflow conditions for a full cycle of period T. The coupled non-linear partial differential equations governing the conservation of mass and momentum of a viscous incompressible fluid flow has been numerically analyzed by a time accurate Finite Volume Scheme in an implicit Euler time marching setting. Roe's flux difference splitting of non-linear terms and the pseudo-compressibility technique in the current numerical scheme makes it robust both in space and time. The combined influence of asymmetric geometry and Reynolds number on the hemodynamic factors like WSS, pressure and velocity has been analyzed. Vortices favoring the thrombogenesis are seen to periodically manifest with 3D shedding in the diastolic phase of the flow cycle. During the whole cycle, relatively high WSS is noticed at the head and toe of the aneurysm. Further for the entire period (T) considerable pressures, with relatively large ones on the distal portion, are noticed on the hull of the aneurysm.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.