Nonsmooth analysis, inequality constrained optimization and variational inequalities are involved in the modelling of unilateral contact problems. The corresponding theoretical and algorithmic tools, which are part of the area known as nonsmooth mechanics, are by no means classical. In general purpose software some of these tools (perhaps in a simplified way) are currently available. Two engineering applications, a rubber-coated roller contact problem and a masonry wall, solved with MARC, are briefly presented, together with elements of the underlying theory.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
A strongly pseudoconvex function is generalized to non-smooth settings. A complete characterization of the strongly pseudoconvex radially lower semicontinuous functions is obtained.
The aim of this work is to present a new result about estimation of the hypertangent normal cone of an intersection without using directionally Lipschitz assumptions.
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We present a simple proof of the separable reduction theorem, a crucial result of nonsmooth analysis which allows to extend to Asplund spaces the results known for separable spaces dealing with Fréchet subdifferentials. It relies on elementary results in convex analysis and avoids certain technicalities.
5
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Nonsmooth analysis, inequality constrained optimization and variational inequalities are involved in the modelling of unilateral contact problems. The corresponding theoretical and algorithmic tools, which are part of the area known as nonsmooth mechanics, are by no means classical. In general purpose software some of these tools (perhaps in a simplified way) are currently available. Two engineering applications, a rubber-coated roller contact problem and a masonry wall, solved with MARC, are briefly presented, together with elements of the underlying theory.
The present paper gives characterizations of radially u.s.c. convex and pseudoconvex functions f: X —> R defined on a convex subset X of a real linear space E in terms of first and second-order upper Dini-directional derivatives. Observing that the property f radially u.s.c. does not require a topological structure of E, we draw the possibility to state our results for arbitrary real linear spaces. For convex functions we extend a theorem of Huang, Ng [10]. For pseudoconvex functions we generalize results of Diewert, Avriel, Zang [6] and Crouzeix [4]. While some known results on pseudoconvex functions are stated in global concepts (e.g. Komlosi [11]), we succeeded in realizing the task to confine to local concepts only.
The present paper provides first and second-order characterizations of a radilly lower semicontinuous strictly pseudoconvex function ∫ : X → R defined on a convex set X in the real Euclidean space Rn in twerms of the lower Dini-directional derivative. In particular we obtain connections between the strictly pseudoconvex functions, nonlinear programming problem, Stampacchia variational inequality, and strict Minty variational inequality. We extend to the radially continuous functions the characterization due to Diewert, Avriel, Zang [6]. A new implication appears in our conditions. Connections with other classes of functions are also derived
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.