Nonlinear nonlocal parabolic equations modeling the evolution of density of mutually interacting particles are considered. The inertial type nonlinearity is quadratic and nonlocal while the diffusive term, also nonlocal, is anomalous and fractal, i.e., represented by a fractional power of the Laplacian. Conditions for global in time existence versus finite time blow-up are studied. Self-similar solutions are constructed for certain homogeneous initial data. Monte Carlo approximation schemes by interacting particle systems are also mentioned.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The existence of McKean's nonlinear jump Markov processes and related Monte Carlo type approximation schemes by interacting particle systems (propagation of chaos) are studied for a class of multidimensional doubly nonlocal evolution problems with a fractional power of the Laplacian and a quadratic nonlinearity involving an integral operator. Asymptotically, these equations model the evolution of density of mutually interacting particles with anomalous (fractal) Lévy diffusion.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.