The study of constitutive model is of great significance to engineering safety evaluation and geological disaster prevention. In this paper, rock materials were regarded as a composite geological material composed of voids and rock matrix, and then a piecewise constitutive model bounded by the yield point was proposed. It can reflect the complete stress–strain curves of rocks, including the compaction stage, the elastic stage, the plastic yield stage and the post-peak stage. Primarily, an objective method to determine the yield point based on the stress difference was proposed. For the rock deformation before yielding, the relationship between the strain of rock materials and the strains of voids and rock matrix was analyzed to establish the corresponding constitutive model. Subsequently, based on the modified Weibull distribution, a damage statistical constitutive model of rocks was established to describe the nonlinear deformation after the yield point. Meanwhile, the determining method of model parameters was given. Finally, the uniaxial and triaxial compression test data of different types of rocks were used to verify the proposed model. The results indicate that the model curves are in good agreement with the experimental results. Hence, it is feasible and reasonable to divide the macroscopic strain of rocks into the strains of voids and rock matrix. Additionally, there is a power function attenuation relationship between the deformation ratio of voids to rock matrix and the axial stress.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.