We consider a nonlinear Neumann elliptic equation driven by the p-Laplacian and a Caratheodory perturbation. The energy functional of the problem need not be coercive. Using variational methods we prove an existence theorem and a multiplicity theorem, producing two nontrivial smooth solutions. Our formulation incorporates strongly resonant equations.
We consider a nonlinear Neumann elliptic equation driven by a p-Laplacian-type operator which is not homogeneous in general. For such an equation the energy functional does not need to be coercive, and we use suitable variational methods to show that the problem has at least two distinct, nontrivial smooth solutions. Our formulation incorporates strongly resonant equations.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.