Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Ograniczanie wyników
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  non-trivial zero formula
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote The inverse Riemann zeta function
100%
EN
In this article, we develop a formula for an inverse Riemann zeta function such that for w = ζ(s) we have s = ζ −1 (w) for real and complex domains s and w. The presented work is based on extending the analytical recurrence formulas for trivial and non-trivial zeros to solve an equation ζ(s) − w = 0 for a given w-domain using logarithmic differentiation and zeta recursive root extraction methods. We further explore formulas for trivial and non-trivial zeros of the Riemann zeta function in greater detail, and next, we introduce an expansion of the inverse zeta function by its singularities, study its properties and develop many identities that emerge from them. In the last part we extend the presented results as a general method for finding zeros and inverses of many other functions, such as the gamma function, the Bessel function of the first kind, or finite/infinite degree polynomials and rational functions, etc. We further compute all the presented formulas numerically to high precision and show that these formulas do indeed converge to the inverse of the Riemann zeta function and the related results. We also develop a fast algorithm to compute ζ −1 (w) for complex w.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.