Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  nieciągła metoda Galerkina
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This paper deals with hp-type adaptation in the discontinuous Galerkin (DG) method. The DG method is formulated in this paper with a non-zero mesh skeleton width, which leads to a version of the method called in this paper the interface discontinuous Galerkin (IDG) method. In this formulation, the mesh skeleton has a finite volume and special finite elements are used for discretization. The skeleton spatial calculations are performed using the finite difference or mid-values formulas which are based on the shape functions of the neighbouring finite elements. The Dirichlet boundary conditions are applied using a nonzero width of the material between the outer boundary and a finite element aligned with the boundary. Next, the paper discusses the mesh refinement of hp type. In the IDG method, the mesh does not have to be conforming. The Zienkiewicz-Zhu (ZZ) error indicator is adapted in the IDG method for the purpose of mesh refinement. The paper is illustrated with two-dimensional examples, in which the mesh refinement for an elliptic problem is performed.
2
100%
|
|
tom Vol. 18, nr 4
27--39
EN
In the current work, we investigate a technique based on discontinuous Galerkin method for the numerical approximation of semi-differential equations with Caputo’s fractional derivative. In this approach, using the natural upwind fluxes enables us to solve the model problem element by element locally in each subintervals and there is no need to solve a full global matrix. Numerical experiments are given to verify the efficiency and accuracy of the proposed method. Numerical solutions are compared with the exact solutions as well as the numerical solutions obtained by other available well-established computational procedures. The results show that the LDG method is more accurate for solving this class of differential equation with relatively low degrees of polynomials and number of elements.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.