Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Ograniczanie wyników
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  neural Kohonen network
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
100%
PL
Praca przedstawia analizę zastosowania różnych algorytmów uczących Kohonena w prognozowaniu profili obciążeń w małym systemie elektroenergetycznym w Polsce. W badaniach numerycznych, przeprowadzonych w środowisku programistycznym MATLAB, wzięły udział algorytmy WTA, CWTA, gaussowski WTM oraz algorytm gazu neuronowego WTM. Prognozowanie przeprowadzane zostało na podstawie uśrednionych wag neuronów zwyciężających w przeszłości dla danego typu dnia tygodnia.
EN
The paper shows the application of self-organizing methods in Kohonen network for prediction of the profiles of load in a small power system in Poland. Four learning methods were used: WTA, CWTA, Gaussian WTM and neural gas. The prediction of power consumption has been limited to the profile of load. The vector profile prognosis is equal to the average of vectors of the winning neurons in the appropriate days of the week and month.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.