W pracy przedstawiono wyniki badań prezentujące wpływ wyboru funkcji sąsiedztwa (neighborhood function - NF) w sieciach Kohonena na jakość procesu uczenia się tych sieci. Celem badań jest określenie, która NF może być najefektywniej zrealizowana sprzętowo, a jednocześnie nie pogarsza jakości procesu uczenia się samoorganizujących się sieci neuronowych. Zbadano efektywność uczenia sieci Kohonena, korzystając z miary błędu kwantyzacji oraz błędu topograficznego. Dokonano porównania uzyskanych wyników dla czterech typów funkcji sąsiedztwa oraz trzech topologii warstwy wyjściowej sieci.
EN
The paper presents an influence of the type of the neighborhood function (NF) on the learning process of the Kohonen neural networks. Four different NF and three topology have been compared. The objective was to determine which NF is the most efficient looking both from the transistor level implementation and the learning quality points of view. The effectiveness of the learning process of SOMs was assessed using two criteria: the quantization error and the topographic error.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.