Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 18

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  natural operator
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
We reduce the problem of describing all \(\mathcal{M} f_m\)-natural operators  transforming general affine connections on \(m\)-manifolds into general affine ones to the known description of all \(GL(\mathbf{R}^m)\)-invariant maps \(\mathbf{R}^{m*}\otimes \mathbf{R}^m\to \otimes^k\mathbf{R}^{m*}\otimes\otimes ^k\mathbf{R}^m\) for \(k=1,3\).
2
Content available remote The natural linear operators Λp T* → TTr*
100%
EN
For integers p ≥ 0, n ≥ p+2 and r ≥ 1 all natural linear operators Λp T*|Mfn → TTr* transforming p-forms from n-manifolds M into vector fields on the r-th order cotangent bundle Tr* M = Jr (M, R)0 of M are completely described.
3
Content available remote 2-forms induced by lagrangians on weil bundles
80%
|
2001
|
tom Vol. 34, nr 4
995-967
EN
Let Q : B - A be an algebra epimorphism of Well algebras and let Q :T M -> T M be the canonical extension of Q over a manifold M. The full classification of natural operators transforming functions TAM -"o R into 2-forms on TBM of finite order with respect to Q is given.
4
Content available remote On some natural operators in vector fields
80%
|
2003
|
tom Vol. 36, nr 1
221--230
5
Content available remote Reduction for natural operators on projectable connections
80%
EN
We present a very simple proof of a general reduction for natural operators on torsion free projectable classical linear connections.
6
Content available remote Liftings of vector fields to (JrT*,a)
80%
|
2002
|
tom Vol. 35, nr 1
211-216
7
Content available On the twisted Dorfman-Courant like brackets
70%
EN
There are completely described all [formula]-gauge-natural operators C which, like to the Dorfman-Courant bracket, send closed linear 3-forms [formula]on a smooth (C ∞) vector bundle E into R-bilinear operators [formula] transforming pairs of linear sections of [formula] into linear sections of [formula]. Then all such C which also, like to the twisted Dorfman-Courant bracket, satisfy both some “restricted” condition and the Jacobi identity in Leibniz form are extracted.
8
Content available remote On the gauge-natural operators similar to the twisted Dorfman-Courant bracket
70%
EN
All [formula]-gauge-natural operators C sending linear 3-forms [formula] on a smooth [formula] vector bundle E into R-bilinear operators [formula] transforming pairs of linear sections of [formula] into linear sections of [formula] are completely described. The complete descriptions is given of all generalized twisted Dorfman-Courant brackets C (i.e. C as above such that C0 is the Dorfman-Courant bracket) satisfying the Jacobi identity for closed linear 3-forms H . An interesting natural characterization of the (usual) twisted Dorfman-Courant bracket is presented.
EN
We describe all natural operators \(A\) transforming general connections \(\Gamma\) on fibred manifolds \(Y \rightarrow M\) and torsion-free classical linear connections \(\Lambda\) on \(M\) into general connections \(A(\Gamma,\Lambda)\) on the fibred product \(J^{}Y \rightarrow M\) of \(q\) copies of the first jet prolongation \(J^{1}Y \rightarrow M\).
10
Content available On canonical constructions on connections
70%
EN
We study  how a projectable general connection \(\Gamma\) in a 2-fibred manifold \(Y^2\to Y^1\to Y^0\)  and a general vertical connection \(\Theta\) in \(Y^2\to Y^1\to Y^0\) induce a general connection \(A(\Gamma,\Theta)\) in \(Y^2\to Y^1\).
EN
We classify all \(\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2}\)-natural operators \(A\) transforming projectable-projectable torsion-free classical linear connections \(\nabla\) on fibered-fibered manifolds \(Y\) of dimension \((m_1,m_2, n_1, n_2)\) into \(r\)th order Lagrangians \(A(r)\) on the fibered-fibered linear frame bundle \(L^{fib-fib}(Y )\) on \(Y\). Moreover, we classify all \(\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2}\)-natural operators \(B\) transforming projectable-projectable torsion-free classical linear connections r on fiberedfibered manifolds \(Y\) of dimension \((m_1,m_2, n_1, n_2)\) into Euler morphism \(B(\nabla)\) on \(L^{fib-fib}(Y )\). These classifications can be expanded on the \(k\)th order fibered-fibered frame bundle \(L^{fib-fib,k}(Y )\) instead of \(L^{fib-fib}(Y )\).
12
Content available remote On naturality of the formal Euler operator
70%
|
|
tom Vol. 38, nr 1
235--238
EN
That all natural operators of the type of formal Euler operator from the variational calculus are the constant multiples of the formal Euler operator is deduced.
13
Content available remote On the contact (k, r)-coelements
70%
|
2003
|
tom Vol. 36, nr 2
433--449
15
Content available remote The natural bundles admitting natural lifting of linear connections
60%
|
2006
|
tom Vol. 39, nr 1
223-232
EN
Natural bundles admitting natural lifting of linear connections are characterized. Corollaries are presented. Some other similar results are obtained, too.
16
Content available remote Higher order valued reduction theorems for classical connections
60%
|
|
nr 2
294-308
EN
We generalize reduction theorems for classical connections to operators with values in k-th order natural bundles. Using the 2nd order valued reduction theorems we classify all (0,2)-tensor fields on the cotangent bundle of a manifold with a linear (non-symmetric) connection.
17
51%
|
2008
|
tom Vol. 41, nr 2
481-489
EN
We construct some extension [...] of the flow operator [...] fibred frame bundle functor. Next using operator [...] we present some construction of general connections[...] depending on classical (not necessarily projectable) linear connections V on Y.
18
Content available remote The natural operators transforming projectable vector fields to vertical bundles
51%
|
|
tom Vol. 38, nr 3
753--760
EN
Let F : Mfn -> FM. be a natural bundle. We classify all FMm,n-natural operators D transforming projectable vector fields X on (m, n)-dimensional fibered manifolds Y - M to vector fields D{X) on the F-vertical bundle VFY -> M. We apply this classification result to some more known natural bundles F.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.