Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  napęd PMSM
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
W niniejszym artykule zaprezentowano analizę możliwości zastosowania sieci neuronowych w estymacji prędkości silnika synchronicznego z magnesami trwałymi. W celu realizacji tego zadania zastosowano jednokierunkowe wielowarstwowe sieci neuronowe (Multi Layer Perceptron Neural Network). Opisana została metodyka projektowania, ze szczególnym uwzględnieniem doboru struktury sieci neuronowej oraz postaci wektora wejściowego. Przedstawiono wybrane wyniki badań zaprojektowanego modelu neuronowego. Uzyskano bardzo wysoką dokładność odtwarzania prędkości silnika. Badania potwierdziły też odporność estymatora na zmiany rezystancji stojana maszyny. Obliczenia związane z opracowanym modelem wykonano w środowisku Matlab.
EN
In this paper analysis of possibilities of neural network application for estimation of speed of permanent magnet synchronous motor is presented. In order to realize of this task Multi Layer Perceptron Neural Network are applied. Several design steps with particular emphasis on the selection of structure of neural network and organization of the input vector are described. Chosen results for prepared neural estimator are presented. High precision of speed estimation is obtained. Additionally changes of stator resistance are introduced during tests, even in such case reproduction of this state variable is very precise, tested model is robust. Calculations related to prepared model are realized in Matlab.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.