In this work we present recent results on nanoscale imaging in the extreme ultraviolet and soft X-ray spectral ranges, describing three novel imaging systems dedicated for high spatial resolution imaging of nanoscale objects with the extreme ultraviolet and soft X-ray radiations. The extreme ultraviolet and soft X-ray full field microscopes operate at 13.8 nm and 2.88 nm wavelengths and are capable of imaging of nanostructures with a sub-50 nm spatial resolution. A soft X-ray contact microscope operates in the "water-window" spectral range from 2.3 to 4.4 nm wavelength, to obtain images of an internal structure of the investigated object in a thin surface layer of soft X-ray light sensitive photoresist. The development of such compact imaging systems may, in the near future, be important from the point of view of new research related to biological, material science, and nanotechnology applications. Such preliminary applications are also shown in the studies of biological samples, including carcinoma cells, diatoms, and neurons.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Imaging systems with nanometer resolution are instrumental to the development of the fast evolving field of nanoscience and nanotechnology. Decreasing the wavelength of illumination is a direct way to improve the spatial resolution in photon-based imaging systems and motivated a strong interest in short wavelength imaging techniques in the extreme ultraviolet (EUV) region. In this review paper, various EUV imaging techniques, such as 2D and 3D holography, EUV microscopy using Fresnel zone plates, EUV reconstruction of computer generated hologram (CGH) and generalized Talbot self-imaging will be presented utilizing both coherent and incoherent compact laboratory EUV sources. Some of the results lead to the imaging with spatial resolution reaching 50 nm in a very short exposure time. These techniques can be used in a variety of applications from actinic mask inspection in the EUV lithography, biological imaging to mask-less lithographic processes in nanofabrication.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.