Przedstawiono właściwości powłok na bazie surowca odnawialnego (kwasu rycynolowego pozyskiwanego z oleju rycynowego) i żywicy epoksydowej. Ze względu na dużą lepkość takiego oligoestrolu prowadzono modyfikację za pomocą oligowęglanodioli, oligoeterodioli oraz oligobutadienu zakończonego grupami hydroksylowymi. Przygotowano także powłoki z dodatkiem napełniaczy nieorganicznych. W celu zapewnienia właściwości antykorozyjnych dodawano nanomagetyt, minerał należący do spineli, jeden z najsilniejszych magnetyków występujących na ziemi.
EN
This publication presents the properties of coatings based on a renewable raw material (ricinoleic acid obtained from castor oil) and an epoxy resin. Due to the high viscosity the biobased oligoestrol, modification with oligocarbonate diols, oligoether diols and oligobutadiene terminated with hydroxyl groups was carried out. Coatings with the addition of inorganic fillers were also prepared. Nanomagetite, a mineral belonging to spinel, one of the strongest magnetics found on earth, was added to provide anti-corrosion properties.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Hydrogen bonds play a key role in interactions in biological structures, supramolecular chemistry, and crystal engineering [28, 29]. The development of supramolecular structure created by hydrogen bonds is a new challenge for the synthesis of materials, in order to study their magnetic behaviour [59, 62]. A role played by hydrogen bonds in the transmission of magnetic interactions is still not fully understood, but the number of magnetically coupled hydrogen-bonded systems is growing. The present paper describes magnetic properties of copper(II) complexes [33] with nitrobenzoate and salicylate ligands where the system of hydrogen bonds O-HźźźO is the only path of magnetic interaction. Magnetic measurements in the temperature range 1.8-300 K show magnetic phase-transition at 6 K to antiferromagnetically coupled CuII dimers with singlet-tryplet energy gap 2J = -6.26 cm-1. A variety of different supramolecular hydrogen bond structures [27, 33-52, 57-62] and significant changes in their magnetic properties were analyzed to show the role of hydrogen bonds in magnetic interactions. Magnetostructural correlation has been made taking into account both covalently bridging ligand and the existence of intermolecular hydrogen bonds. An evidence for hydrogen-bond-mediated exchange coupling has been observed in magnetic study as well as in DFT calculations [40, 48]. Intermolecular interaction has been generally treated as a nuance, but today, it has established itself as an important functional tool, tunable at will [59] in the design of nanosized magnetic materials and their dimensionally-expanded compounds [57-62]. Intermolecular magnetic exchange interactions through hydrogen bonds, can have a large influence on the quantum properties of single molecular magnets SMMs [59]. Hydrogen bonding leads to coupling of the magnetic effects of individual SMMs units and to different quantum behaviour. Even very weak hydrogen bond inter-molecular interactions demonstrate a possibility of switching from an original nanosized magnetic system to a correlated system, for example, from single molecule magnet SMM to single chain magnet SCM or from such nanosized magnets to a bulk magnet [59].
Aktualny postęp w zakresie nanobiotechnologii doprowadził do rozwoju nowego obszaru nanomedycyny, związanego z aplikacją nano(bio)materiałów zarówno w celach diagnostycznych jak i terapeutycznych (teranostyki). Główne oczekiwania i wyzwania w powyższym zakresie dotyczą nanoproduktów magnetycznych, otrzymywanych metodami bioinżynierii, o potencjalnym zastosowaniu w transporcie leków, przede wszystkim leków przeciwnowotworowych, stosowanych w terapiach wykorzystujących określone molekularne punkty uchwytu. Wyjątkowe właściwości fizykochemiczne nanocząstek magnetycznych rokują nadzieję na rozwój współczesnej nanomedycyny nowotworów, stanowiąc między innymi technologiczny przełom w zakresie celowanego transportu leków i genów, terapii nowotworów z wykorzystaniem magnetycznej hipertermii, inżynierii tkankowej, znakowania komórek nowotworowych czy molekularnego obrazowania rezonansem magnetycznym. Wraz z szerokim zainteresowaniem magnetycznymi nanoproduktami bioinżynierii, w sferze szczególnej uwagi pozostaje ich potencjał toksyczny. Pokaźna ilość dotychczasowych dowodów naukowych sugeruje, że pewne właściwości nanocząstek magnetycznych (np. podwyższona aktywność powierzchniowa, zdolność do penetracji przez błony komórkowe, oporność na procesy biodegradacji) może zwiększać ich potencjał cytotoksyczny w porównaniu z odpowiadającymi im materiałami nieposiadającymi rozmiarów w nanoskali. Innymi słowy, ocena bezpieczeństwa przeprowadzona w odniesieniu do standardowych materiałów magnetycznych, może mieć ograniczone zastosowanie w ocenie ryzyka narażenia zdrowotnego i środowiskowego w przypadku nowych nanoproduktów magnetycznych otrzymanych metodami bioinżynierii. W niniejszym artykule dyskutujemy główne kierunki badawcze prowadzone w doświadczalnych modelach in vitro oraz in vivo w celu oceny toksyczności magnetycznych nanozwiązków, zwracając szczególną uwagę na problematykę analizy toksykologicznej nanomagnetyków. W pracy zaprezentowano ponadto nowe kierunki badawcze prowadzone na polu nanotoksykologii, podkreślając znaczenie rozwoju alternatywnych metod testowania magnetycznych nano(bio)produktów.
EN
Current advances in nanobiotechnology have led to the development of new field of nanomedicine, which includes many applications of nano(bio)materials for both diagnostic and therapeutic purposes (theranostics). Major expectations and challenges are on bioengineered magnetic nanoparticles when their come to delivering drug compounds, especially to targeting anticancer drugs to specific molecular endpoints in cancer therapy. The unique physicochemical properties of these nanoparticles offer great promise in modern cancer nanomedicine to provide new technological breakthroughs, such as guided drug and gene delivery, magnetic hyperthermia cancer therapy, tissue engineering, cancer cell tracking and molecular magnetic resonance imaging. Along with the expanding interest in bio-engineered magnetic nanoproducts their potential toxicity has become one of the major concerns. To date, a number of recent scientific evidences suggest that certain properties of magnetic nanoparticles (e.g., enhanced reactive area, ability to cross cell membranes, resistance to biodegradation) may amplify their cytotoxic potential relative to bulk non-nanoscale counterparts. In other words, safety assessment developed for ordinary magnetic materials may be of limited use in determining the health and environmental risks of the novel bio-engineered magnetic nanoproducts. In the present paper we discuss the main directions of research conducted to assess the toxicity of magnetic nanocompounds in experimental in vitro and in vivo models, pointing to the key issues concerning the toxicological analysis of magnetic nanomaterials. In addition new research directions of nanotoxicological studies elucidating the importance of developing alternative methods for testing magnetic nano(bio)products are also presented.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.