The paper describes a method for discrimination of poorly distinguishable textures based on application of morphological spectra. The textures are analyzed as random fields of specific probability distributions. The samples of textures are thus considered as their instances and so are also their morphological spectra. Some basic properties of morphological spectra, as well as the definition of similarity measure are shortly reminded. The problem of textures discrimination is formulated as similarity assessment of spectral components histograms. For this purpose, various statistics like: mean value, standard deviation, skewness and kurtosis, as well as some secondary statistics based on theformer, are used. A discriminating index is introduced for evaluation of their discriminating properties. The method of evaluating the discriminating power of statistics based on 1st and 2nd level morphological spectra is illustrated by analysis of the spectra of USG liver images in the groups of healthy persons and patients affected by liver fibrosis. A short description of a IASS program used to the calculations is given. The problem of textures discrimination invariant to rotations and parallel translations of images is described. It is shown that the proposed method discriminates statistically the “ill” and “healthy” textures despite the fact that the differences between them are visually not distinguishable.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.