Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  moment gnący
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Flexibility and trackability of laser cut coronary stent systems
100%
EN
Coronary stents are the most important supports in present day cardiology. Flexibility and trackability are two basic features of stents. In this paper, four different balloon-expandable coronary stent systems were investigated mechanically in order to compare their suitability. The coronary stent systems were assessed by measurements of stent flexibility as well as by comparison of forces during simulated stenting in a self-investigated coronary vessel model. The stents were cut by laser from a single tube of 316L stainless steel or L-605 (CoCr) cobalt chromium alloy. The one- and four-point bending tests were carried out to evaluate the stent flexibility EźI (Nmm2), under displacement control in crimped and expanded configurations. The flexibility of stents would be rather dependent on the design than on raw material. In general a more flexible stent needs lower tracking force during the implantation. The L-605 raw material stents need lower track force to pass through in the vessel model than the 316L raw material stents. The sort and long stents passed through the curved vessel model in different ways. The long stents nestled to the vessel wall at the outer arc and bent, while the short stents did not bend in the curve, only the delivery systems bent.
PL
Sprężynowanie jest istotnym zjawiskiem towarzyszącym procesowi gięcia. Wpływa ono na końcowy kształt giętych elementów, a wielkość powrotnych odkształceń sprężystych jest trudna do oszacowania w przypadku znacznej deformacji przekroju poprzecznego giętych elementów. W artykule dokonano analizy podstawowych parametrów gięcia rur o przekroju kołowym - momentu gnącego i współczynnika sprężynowania. Przeprowadzono pomiary doświadczalne oraz obliczenia analityczne wymienionych parametrów. Pokazano zastosowanie sieci neuronowych do wyznaczania momentu gnącego i współczynnika sprężynowania.
EN
Under bending relatively thin profiles will undergo cross-sectional distortion. It is not observed in case of beams with solid cross-section (more precisely, the distortion of a solid cross-sectional beam can be completely ignored). This characteristic in conjunction with the properties of the profiles material leads to a typical hardening-softening characteristic in the relation between the centerline curvature of the profile and applied bending moment. There is a critical value of curvature K/er. When K < K/er, the strain hardening of the material dominates the behaviour of profile and the bending moment increases with increasing curvature. When K > K/er, however, the reduction in rigidity caused by distortion of the profile cross-section overwhelms the effect of strain hardening and results in decreasing bending moment as the curvature increases. In the case of the bending of pipes with circular cross-section, the parameter describing the degree of cross-sectional distortion is the degree of ovalization. Analytical determination of the main bending parameters i.e. bending moment and springback coefficient is rather complicated because of above mentioned cross-sectional distortion and could be performed under several assumptions. The evaluation of elastic springback effect is a fundamental aspect in practice of profile forming operations. Springback takes place in a forming operation after removing the forming tools and introduces deviations from the desired final shape and consequently, the stamped profile does not conform the design specifications and could result unsuitable for the application. Since almost all forming processes are characterized by a significant amount of deformation introduced by a bending mechanics, the distribution of strain along profile cross-section is strongly inhomogeneous. Such a distribution, together with elastic-plastic behaviour of the workpiece determinates the occurrence of springback after the removal of the forming tools. It is well known from the tensile test that the elastic part of the total strain, which is recovered if the load is released, is equal to the ratio of the stress before unloading to the Young modulus. Thus the tendency to elastic springback increases at increasing the strain hardening coefficient and decreasing the elastic stiffness. This means that the cross-sectional distortion of a profile affected the tendency of elastic springback. The main goal of the work presented in this paper was to determine the relation between both the bending moment and springback coefficient as a function of bending curvature. For this reason another procedure was applied - the artificial neural network (ANN) method. Multi-layer Perceptron (MLP) neural networks were trained using measured process data of profile bending. The MLP had profile parameters as input and bending moment as well as spring-back coefficient as output. It was confirmed that this system is a valid alternative for the quick responsible method of main bending parameters determination.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.