The paper presents two methods used for the identification of Continuous-time Linear Time Invariant (CLTI) systems. In both methods the idea of using modulating functions and a convolution filter is exploited. It enables the proper transformation of a differential equation to an algebraic equation with the same parameters. Possible different normalizations of the model are strictly connected with different parameter constraints which have to be assumed for the nontrivial solution of the optimal identification problem. Different parameter constraints result in different quality of identification. A thorough discussion on the role of parameter constraints in the optimality of system identification is included. For time continuous systems, the Equation Error Method (EEM) is compared with the continuous version of the Output Error Method (OEM), which appears as a special sub-case of the EEM.
The paper presents new concepts of the identification method based on modulating functions and exact state observers with its application for identification of a real continuous-time industrial process. The method enables transformation of a system of differential equations into an algebraic one with the same parameters. Then, these parameters can be estimated using the least-squares approach. The main problem is the nonlinearity of the MISO process and its noticeable transport delays. It requires specific modifications to be introduced into the basic identification algorithm. The main goal of the method is to obtain on-line a temporary linear model of the process around the selected operating point, because fast methods for tuning PID controller parameters for such a model are well known. Hence, a special adaptive identification approach with a moving window is proposed, which involves using on-line registered input and output process data. An optimal identification method for a MISO model assuming decomposition to many inner SISO systems is presented. Additionally, a special version of the modulating functions method, in which both model parameters and unknown delays are identified, is tested on real data sets collected from a glass melting installation.
The paper presents two methods used for the identification of Continuous-time Linear Time Invariant (CLTI) systems. In both methods the idea of using modulating functions and a convolution filter is exploited. It enables the proper transformation of a differential equation to an algebraic equation with the same parameters. Possible different normalizations of the model are strictly connected with different parameter constraints which have to be assumed for the nontrivial solution of the optimal identification problem. Different parameter constraints result in different quality of identification. A thorough discussion on the role of parameter constraints in the optimality of system identification is included. For time continuous systems, the Equation Error Method (EEM) is compared with the continuous version of the Output Error Method (OEM), which appears as a special sub-case of the EEM.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.