Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 8

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  modelowanie agentowe
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The article mainly aims to try and create a new concept for developing logistics and supply chains in the era of Industry 4.0. Analyses of development trends in logistics and production management were used to create the new logistics and supply chain concept. Conclusions were used from the analyses of how the modern concepts of Industry 4.0, Logistics 4.0, Supply Chain 4.0, and 5.0 work. Analyses of the benefits of applying modern management concepts in these areas were carried out and criticised because of their inadequacies, which became apparent during the recent crises in the world. Although the sources of the crises were different, they could be eliminated by reconfiguring logistics systems and supply chains. The results aim to answer three questions: (1) Has the time come to change the current way of looking at logistics and supply chains? (2) What could Supply Chain 4.0 look like using Industry 4.0 tools? (3) How should Supply Chain 4.0 address the logistics and supply chain challenges? The presented answers do not exhaust the topic but rather open up a discussion on logistics and supply chains of the future. The presented concept allows for a completely new global and local view of logistics chains. The structure of the presented model can be subjected to scenario analysis using agent-based simulation modelling due to the structure’s emergent nature. The new approach can significantly benefit the development of local production centres and global supply networks. The benefits mainly come from reducing the environmental impact of manufacturing and logistics processes from the moment the new product idea is conceived.
PL
Praca analizuje współczesne możliwości realizacji radykalnej wizji architektury ewolucyjnej, przedstawionej przez Nicholasa Negroponte i Johna Frazera. Rozważana jest transformacja Internetu w nową, uniwersalną sieciową platformę, sprzyjającą sztucznemu życiu i ewolucji dzięki aktywizacji i integracji zasobów sieci. Opisywany jest agentowy model programowania jako model i język sieciowej, ewolucyjnej gry architektonicznej.
EN
The paper analyzes the current possibilities of realizing a radical vision of evolutionary architecture formulated by Nicholas Negroponte and John Frazer. A transformation is described of the Internet into a universal, networked platform, conducive to artificial evolution owing to the activation and integration of Web resources. The agent-oriented programming paradigm is analyzed as a model and language for evolutionary networked architectural games.
EN
The paper deals with the design of data analysis systems for business process automation. The main goal of the project is to develop an innovative system for analyzing multisource data, business data mining processes, and as a result the creation and sharing of new improved procedures and solutions.
PL
Artykuł dotyczy projektowania systemów analizy danych do automatyzacji procesów biznesowych. Głównym celem projektu jest opracowanie innowacyjnego systemu do analizy danych wieloźródłowych, procesów eksploracji danych biznesowych, a co za tym idzie tworzenie i udostępnianie nowych ulepszonych procedur i rozwiązań.
EN
The article presents the most important information concerning the methods, techniques and indicators of I measures, which are used in the evaluation of production processes. The theory of limitations, process mapping, benchmarking and diagnostic test method have been described. Sample indicators for the evaluation of production processes are presented and the measures for the evaluation of production processes are discussed, as well as methods of obtaining information about the process. The modelling and computer simulations were described and the algorithm of proceeding during the development of a simulation model was presented. The article discusses system dynamics modelling, discrete event modelling and agent modelling.
PL
One of the most prospective bottom-up approaches to modeling of human-environment relations is agent-based modeling (ABM). ABM is a modern technique more and more often used in Geographical Information Science. It is based on entities called agents which can make spatial decisions. They can also exchange information with each other. Moreover, they have attributes which allow to describe their actual state. In classical approach to modeling, all entities are often quite similar. It is possible to create a model with very similar entities within ABM. These entities may behave slightly differently. Agents can have identical attributes and quite different decision rules. It allows a user to apply randomness in a model which is really crucial in environmental studies. ABM and simulation can be traced to investigations into complex adaptive systems, the evolution of cooperation and artificial life. Unlike other modeling approaches, ABM begins and ends with the agent’s perspective. The application of ABM to simulating dynamics within GIS has seen a considerable increase over the last decade. Both agents and decisions they make have spatial reference. So linking AMB with GIS is a natural consequence of these two techniques development. ABM is normally a very useful decision making process, in extreme events simulation, forecasting the environment development, spatial planning, and environmental impact assessment. In this paper. possibilities of the use of ABM were presented. ABM is a modern research technique within GIS. Most important features of ABM were described as well as well-known software platforms and toolsets for agent-based model creating. Finally, information when the ABM can be especially useful in research work and how to select the best system which will fit the standards of our model was provided.
PL
Modelowanie agentowe (ABM) jest przykładem geomodelowania opartego na wykorzystaniu i przetwarzaniu danych przestrzennych czyli związanych z systemami informacji geograficznej. Jest to jedna z najlepiej przystosowanych metod służących do modelowania sprzężonych systemów naturalnych i społecznych (CHANS), a zarazem relacji człowiek-środowisko. System odzwierciedlany w modelu agentowym składa się z obiektów i elementów umieszczonych w przestrzeni modelowej, która stanowi modelowy obraz Pojezierza Gnieźnieńskiego, a kluczową rolę w całym procesie odgrywają agenci – jednostki decyzyjne modelu, którymi w omawianym systemie są rolnicy. Opracowany model agentowy służy do symulacji zmian pokrycia terenu i użytkowania ziemi będących jednym z istotniejszych syntetycznych wskaźników przemian w środowisku geograficznym. Prezentowany model agentowy oparty jest na schemacie działania związanym z przystępowaniem rolników do wybranych pakietów Programu Rolnośrodowiskowego 2007-2013, które wymuszają na nich ściśle określone działania proekologiczne. Model umożliwia modelowanie różnych scenariuszy postępowania rolników, przez co pozwala uzyskać zarówno realne, jak i abstrakcyjne (100% zainteresowania ofertą PRŚ) konfiguracje pokrycia terenu i użytkowania ziemi. Ten sposób modelowania jest szczególnie przydatny w kontekście funkcjonowania środowiska geograficznego opartego o ścisłe relacje człowiek-środowisko. Dodatkowo może służyć, jako narzędzie wykorzystywane w procesie wspierania podejmowania decyzji, w prognozowaniu rozwoju środowiska, w planowaniu przestrzennym oraz w ocenie oddziaływania na środowisko.
EN
Agent-based modeling is an example of geomodeling based on spatial data, i.e. the data connected withgeographic information systems. Using agent-based modeling makes it possible to simulate functioning of natural systems, social systems or coupled human and natural systems (CHANS). ABM approach is one of the best-adapted methods for modeling coupled social-natural systems due to its characteristic elements – agents. When a system is reflected in the model it is built of objects and elements placed in the model space. A key role in the whole process is played by agents – individual decision-making model entities. The agent-based model developed for this paper is created to simulate changes in land use and land cover and to show the environmental effects of this process, which is one of the most important synthetic indicators in the geographical environment. The model developed can be used for different space scales and it based on the process in which farmers take action participation in selected packages of Agri-environmental Programme 2007-2013, which require them to strictly defined environmental activities. The model allows to simulate different scenarios of implemented decision role, thereby resulting in different, both real and abstract, configurations of land use and land cover patterns. This way of modeling is especially useful in the context of CHANS. It can serve as a tool in supporting decision-making processes, in predicting the environmental changes and development, spatial planning and environmental impact assessment.
EN
The article presents the most important information concerning computer modelling and simulation, system dynamics modelling, discrete event modelling and agent modelling. An exemplary model of the production process of windscreen wipers, which was created on the basis of assumptions, discussed the individual components of the model. An example of using JAVA code in AnyLogic program is presented and examples of indicators that can be calculated and presented in the form of a graph in the program are shown. Computer simulations enable tracking and analysis of the production process. They help to verify assumptions and detect irregularities in the modeled process. Simulation programs have a wide range of possibilities, allow you to create reports, charts, comparisons, allow you to optimize processes.
EN
We continue to discuss the milestones of econophysics and sociophysics. We chose them in the context of the challenges posed by contemporary socio-economic reality. We indicate their role in building research areas in econophysics and sociophysics. This part is devoted primarily to complexity, incredibly complex networks, and phase transitions, particularly critical phenomena and processes, agent-based modeling, risk issues in the context of financial markets, and elements of modern sociophysics.
PL
Kontynuujemy omawianie kamieni milowych ekonofizyki i socjofizyki. Wybraliśmy je w kontekście wyzwań jakie niesie ze sobą współczesna rzeczywistość społeczno-ekonomiczna. Wskazujemy na ich rolę w budowaniu obszarów badawczych ekonofizyki i socjofizyki. Ta część poświęcona jest przede wszystkim złożoności, a w tym sieciom złożonym, przemianom fazowym a szczególnie zjawiskom i procesom krytycznym, modelowaniu agentowemu, zagadnieniom ryzyka w kontekście rynków finansowych oraz elementom współczesnej socjofizyki.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.