Thermal conductivity is one of the crucial properties for thermal modelling as well as tunnelling or geological modelling. Available data are mainly from laboratory measurements. Therefore, additional ways, such as correlations with other properties to derive the petrophysical parameter, will be an advantage. The research presented here continues and improves the petrographic-coded model concept with an increased set of data, including a variety of lithologies, and, furthermore, the correlations, including the electrical resistivity. Input parameters are no longer taken from the literature, but are derived directly from measurements. In addition, the results are compared with other published approaches. Results show good correlations with measured data. The comparison with the multi-linear regression method shows acceptable outcome, in contrast to a geometric-mean method, where data scatter. In summary, it can be said that the improved model delivers for both correlation (compressional wave velocity and electrical resistivity with thermal conductivity) positive results.
The steady 3-D raw water turbulent flow is numerically investigated. This flow is formed of solid silica sand (quartz) carried by water in stainless steel pipe. The flow in a straight pipe and flow in a pipe with a sudden contraction are analyzed using a two-way coupled Eulerian-Lagrangian approach. Erosion rate is estimated by Oka erosion model combined with the constant coefficient of restitution. The effect of solid particles mass flow rate, inlet velocity, particle diameter, internal pipe diameter, orientation, contraction coefficient, and wall pipe contraction angle on erosion rate are examined. The predicted erosion is distributed homogenously for straight pipe, while the step wall area of the contraction is the most eroded part. The erosion rate increases with the increase of solid particles diameter, flow rate, inlet velocity, and decreasing pipe diameter. Iit is found that the erosion is limited till the particle diameter reaches 500 µm then it starts to increase. The erosion rate increases with decreasing contraction coefficient and step wall angle. When the step wall angle decreased to 300, the erosion rate is reduced by 30 times that for 900. So, decreasing step wall angle can be considered as a geometrical solution to reduce erosion rate.
Podstawą artykułu są badania modelowe wykonane w zadaniu nr 5 projektu rozwojowego nr R09 0042 06/2009 pod tytułem „Techniczne i technologiczne rozwiązania dla odkrywki Koźmin pozwalające kontynuowanie eksploatacji złoża węgla brunatnego w obszarze Natura 2000”, finansowanego przez Narodowe Centrum Badań i Rozwoju. W artykule przedstawiono model warunków hydrogeologicznych złoża Koźmin, schemat trzypoziomowego modelu matematycznego oraz wariantowe badania modelowe bez ekranu i z ekranem. Model matematyczny umożliwił obliczenie dopływów wód do odkrywki oraz zasilania z rzeki Warty w warunkach ekranowania i bez niego.
EN
The basis of article are modelling studies performed in task No. 5 development project No. R09 0042 06/2009 titled „Technical and technological solutions for Koźmin opencast allowing the continuation of exploitation of brown coal deposits in the area of Natura 2000”, funded by the National Center for Research and Development. The article presents a model of hydrogeological conditions of the Koźmin deposit, scheme of three-level mathematical model and variant model tests without screen and with screen. The mathematical model allowed to calculate inflow of water to the opencast and recharge from Warta river in shielding condition and without it.
The aim of the study was to indicate the procedure of using laboratory physical model tests of scour around bridge piers for the purposes of determining the potential scour of a riverbed on field bridge crossings. The determination of the uniform modeling scale coefficient according to the criterion of reliable sediment diameter limits the application of the results of tests on physical models to selected types of sediment. The projected depths of scouring of the riverbed at the pier in nature were determined for an object reproduced in the scale of 1:15 determined from the relationship of flow resistance, expressed by hydraulic losses described by the Chézy velocity coefficient, the value of which, in the model and in nature, should be the same. Expressing the value of the Chézy velocity coefficient with the Manning roughness coefficient and introducing the Strickler parameter, it was shown that the coarse sand used in the laboratory bed models the flow resistance corresponding to the resistance generated by gravel in nature. The verification of the calculated size of scouring was based on popular formulas from Russian literature by Begam and Volčenkov [16], Laursen and Toch’s [20] from the English, and use in Poland according to the Regulation ... (Journal of Laws of 2000, No. 63, item 735) [32].
PL
Celem pracy było wskazanie procedury wykorzystania laboratoryjnych fizycznych badań modelowych rozmyć wokół filarów mostowych dla potrzeb określenia potencjalnego rozmycia koryta rzecznego na terenowych przeprawach mostowych. Wykorzystanie wyników badań laboratoryjnych w prognozowaniu rozmyć wokół filarów nowo projektowanych mostów wymaga uwzględnienia wpływu skali modelu. W warunkach analizowanego zadania skalę modelu ustalono z relacji parametrów granulometrycznych rumowiska wykorzystanego w badaniach modelowych i rumowiska rzecznego w cieku, dla którego prowadzono prognozę rozmyć. Określenie współczynnika nieskażonej skali modelowania według kryterium miarodajnej średnicy rumowiska ogranicza zastosowanie wyników badań na modelach fizycznych do wybranych rodzajów rumowiska rzecznego. Prognozowane głębokości rozmycia dna przy filarze w naturze zostały określone dla obiektu modelowanego w skali 1:15 ustalonej z relacji oporów przepływu, wyrażonych stratami hydraulicznymi opisanymi współczynnikiem prędkości Chezy, którego wartość na modelu i w naturze powinna być taka sama. Wyrażając wartość współczynnika prędkości Chezy, współczynnikiem szorstkości Manninga i wprowadzając parametr Stricklera, wykazano, że piasek gruby zastosowany w korycie laboratoryjnym modeluje opory przepływu odpowiadające oporom jakie generuje żwir w naturze. Do weryfikacji obliczonych wielkości rozmyć wykorzystano popularne wśród projektantów formuły z literatury rosyjskiej Begama i Volčenkova [35], angielskiej Laursena i Tocha [36] oraz zalecane do stosowania w Polsce według Rozporządzenia… [5]. W rezultacie otrzymano wzory opisujące wielkości rozmyć dla badanego obiektu ze wskazaniem zakresów ich stosowania.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.