W artykule przeanalizowano równania opisujące szybkość procesów adsorpcji i absorpcji oparte na modelu Whitmana. W przypadku stanów nieustalonych, strumień masy substancji wnikającej do warstwy materiału dna rzeki, obliczony za pomocą tych równań różni się od strumienia masy obliczonego za pomocą równania dyfuzji masy. W celu zmniejszenia różnicy między strumieniem wyznaczonym z modelu Whitmana a strumieniem rzeczywistym wprowadzono poprawkę do równania gradientu stężenia wynikającego z modelu Whitmana. Poprawka ta może być wyrażona w postaci iloczynu pewnego parametru i pochodnej stężenia na granicy faz, po stronie fazy stałej, względem czasu. Parametr ten jest odpowiednikiem współczynnika [alfa][2] (równanie (33c) cz. I). W związku z tym zależeć on będzie od okresu fali stężenia, stałej szybkości procesów chemicznych oraz współczynnika dyfuzji.Poprawione równanie dla gradientu stężenia zastosowano do wyprowadzenia innego równania opisującego ogólną szybkość procesów: absorpcji, adsorpcji przy liniowej równowadze międzyfazowej oraz reakcji chemicznych zachodzących w fazie ciekłej i stałej według mechanizmu jednocząsteczkowego pierwszego rzędu w stanach nieustalonych w odniesieniu do fazy ciekłej. Znajomość ogólnej szybkości procesów wcześniej wymienionych umożliwia budowę adwekcyjno-dyspersyjnego modelu transportu masy w rzece uwzględniającego przebieg tych procesów. Model taki zawiera składnik w postaci poprawki odnoszącej się do pochodnej stężenia względem czasu. Opisany model może być również zastosowany do symulacji transportu zanieczyszczeń podlegających procesom adsorpcji lub absorpcji, w warstwie materiału dna rzeki, przebiegającym z prędkością skończoną i nieskończenie wielką poprzez stany równowagowe.W związku z tym współczynnik a2, występujący w modelu składającym się z równań: (42), (43), (44), jest jednocześnie poprawką zwiększającą dokładność modelu Whitmana oraz parametrem charakteryzującym procesy adsorpcyjno-absorpcyjne przebiegające poprzez stany równowagowe.
EN
Equations describing the rate of the adsorption and absorption processes based on Whitman.s model have been analysed. In the case of unstable states, the stream of substance mass, penetrating to the layer of the material of the river bottom, calculated by means of these equations, differs from the stream of mass calculated by means of the equation of mass diffusion. In order to reduce the difference between the stream determined by Whitman.s model and the real stream, a correction has been introduced in the equation for the concentration gradient, resulting from Whitman.s model. This correction can be expressed in the form of the product of a certain parameter and the concentration derivative on the phase boundary, on the side of the solid phase, with respect to time. This parameter is the equivalent of the coefficient [alfa][2] (eq. (33c), part I). Accordingly, it will depend on the period of concentration wave, the rate constant of the chemical processes, the diffusion coefficient.The corrected equation for the concentration gradient has been used to derive another equation, describing the general rate of the absorption and adsorption processes at linear interphase equilibrium and the chemical reactions occurring in the liquid and solid phase according to the monomolecular mechanism of the first order in unstable states with reference to the liquid phase. The knowledge of the general rate of the earlier mentioned processes enables the construction of an advective - dispersion model of mass transport in a river, with consideration given to the progress of these processes. Such a model contains a component in the form of a correction referring to the concentration derivative with respect to time.The described model may be also used for simulation of the transport of pollutants subjected to the progress of processes of adsorption and absorption in the layer of the material of the river bottom, occurring at a finite and infinitely great rate through the equilibrium states. Accordingly, the coefficient a2, appearing in the model comprising the equations (42), (43), (44) is simultaneously a correction increasing the accuracy of Whitman.s model and a parameter characterising the adsorption - absorption processes progressing through the equilibrium states.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In terms of quality particularly difficult to describe are processes of mass exchange between different phases (e.g., atmospheric air-water, water-river sediment, water-algae, etc.). Whitman's model is most often used to describe the mass transport processes through the phase boundary. Theoretical analysis of the mass transfer process through the phase boundary showed that in unsteady states, the calculation results obtained from Whitman's model differ from the results obtained using the accurate diffusion model. These differences are due to the fact that concentration profiles in the direction of diffusion process change in time. Assumptions for Whitman's model do not include changes in the concentration distribution over time. Therefore, the correction factor was introduced to Whitman's model. The correction factor is defined as a parameter that multiplies a concentration derivative over time in the mass transport model. The correction factor can be used to estimate the effective diffusion coefficient of the substance that permeates from the aqueous phase to the sediment. The correction factor improves the degree of fit of the mass transport model to the measurement data. It can be used to estimate the effective turbulent diffusion coefficient from water phase to the sediment phase.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.