The efficient cw mode locking (cw-ML) regime was demonstrated in Nd:YVO₄ laser by means of saturable absorber mirror (SAM). The 0.3-at.% Nd³⁺ doped 10-mm-long YVO₄ crystal end pumped by 20-W diode module with a beam shaper was applied as a gain medium located in the close vicinity to the rear flat mirror of the first arm of Z-type resonator of 316 cm total length with two curved mirrors of 100-cm curvature radii. The SAM of 2%-saturable absorptance and saturation fluence of 50 μJ/cm² was mounted at the opposite end of a resonator. The developed “dynamically stable” cavity design mitigates detrimental role of thermal aberration in gain medium, enforcing clean perfect mode locking even for the highest pump densities. The cw-ML pulses with 47.5 MHz repetition rate and pulse durations in the range of 15–20 ps were observed for a wide range of pump powers and output coupler losses. In the best case, for 32% of output coupler transmission, up to 6.2 W of average power with near 35% slope efficiency was achieved. The thresholds for Q-switched ML, cw-ML regimes were 2.67 W and 6.13 W of pump power, respectively. For the maximum pump power of 20 W we obtained 133 nJ of pulse energy with 16-ps pulse duration, resulting in a peak power higher than 8 kW. The threshold energy density at SAM giving the QML regime was estimated to be about 30 μJ/cm2, threshold of cw-ML regime was 220 μJ/cm².
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The Q-switched mode locking (QML) regime provides the generation of relatively high peak power picosecond pulses train with energies of a few µJ each in a simple resonator. The critical review of QML methods and results including our investigations is given in the first part of presentation. The application of several types of saturable crystalline absorbers (Cr⁴⁺:YAG, V³⁺:YAG, LiF, GaAs) leads to chaotic, partial QML effect, with less than 100% modulation depth in principle. The fully modulated efficient QML laser was demonstrated in the next part. The acousto-optic cell playing a double role of Q-switch and mode locker was located near a flat output coupler. The two folding mirrors were mounted on the translation stages for matching the resonance frequency of the cavity to the radio frequency of acousto-optic modulator. The QML pulses with envelope durations of 100n150 ns and 100% modulation depth were observed for wide range of pump powers and repetition rates. In the preliminary experiments up to 3 W of output average power, 100 µJ of the envelope energy, having approximately 5n8 mode locked pulses were achieved.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.