Celem badań była ocena możliwości analizy danych przy użyciu sztucznych sieci neuronowych do modelowania i prognozowania cech reologicznych surowych farszów mięsnych o założonym składzie surowcowym. Materiał badawczy stanowiło mięso wieprzowe, wołowe, słonina wieprzowa, zamienniki tłuszczu, lód oraz mieszanka peklująca. Surowy farsz mięsny w różnych proporcjach składników poddawano analizie instrumentalnej w celu wyznaczenia 7 wyróżników właściwości lepkosprężystych farszu. Zaprojektowano model sztucznej sieci neuronowej o architekturze perceptronu wielowarstwowego 7:7–11–7:7 i poddano ją procesowi uczenia metodą wstecznej propagacji błędu w celu rozpoznawania i przewidywania 7 parametrów składających się na charakterystykę tekstury farszów mięsnych.
EN
The aim of the study was to elaborate a method of modelling and forecasting rheological features which could be applied to raw minced meat at the stage of mixture preparation with a given ingredient composition. The investigated material contained pork and beef meat, pork fat, fat substitutes, ice and curing mixture in various proportions. Seven parameters were measured for each sample of raw minced meat. Then, the neural network model of multi-layer perceptron architecture 7:7–11–7:7 was designed and trained with back propagation algorithm in order to predict texture features. Statistical analysis of the results revealed, that artificial neural network model is able to predict rheological parameters a of raw minced meat.