Badania pól prędkości i temperatury w przepływach gazu stanowią istotne zagadnienie metrologiczne w wielu obszarach współczesnej nauki i techniki. Jedna z metod pomiarowych stosowanych w takich badaniach jest termoanemometria. Jest to metoda pomiaru prędkości przepływu gazu poprzez pomiar strat cieplnych grzanego elementu umieszczonego w badanym przepływie. Metoda ta jest metodą pośrednią, w której sygnał wyjściowy jest funkcją nie tylko mierzonej prędkości, ale zależny również od innych parametrów takich jak temperatura i skład gazu oraz parametry czujnika i układu zasilania. W pracy poddano teoretycznej analizie zagadnienie wpływu stężenia mieszaniny powietrze – dwutlenek węgla na pomiar prędkości metodą termoanemometryczną oraz przedstawiono rezultaty badań modelowych.
EN
Research of the fields of velocity and temperature in gas flows are an important issue of metrology in many areas of modern science and technology. One of the measuring methods used in these studies is hot – wire anemometry. It is a method of measuring the velocity of gas flow by measuring heat loss of heated element placed in the gas flow. This method is the indirect method in which the output signal is a function not only of the measured velocity, but depends also on other parameters. The most important are the temperature and gas composition, and the parameters of the probe and electronic anemometer circuit. In this work the issue of the impact of the concentration of a mixture of air – carbon dioxide on the velocity measurement method has been theoretically analyzed. The results of model tests and analysis have been also presented.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The purpose of this study is to find the relationship between the low-pressure sorption of the gas mixture CO2 and CH4 and properties of coal in the context of geological conditions in the coalbed. These aspects give us a better insight into the interactions between gas mixtures and coal, enabling us to forecast the long-term effects of CO2 storage. In the light of the length of the process and stability of such systems, it is required that physical properties of coal be identified first. A great deal of information can be obtained from sorption isotherms, relating to physico-chemical properties of the sorbent. Test results reveal the relationship between the coal rank and vitrinite reflectance and the sorption capacity of investigated coals.
PL
Celem pracy było znalezienie powiązań między przebiegiem procesu niskociśnieniowej sorpcji mieszaniny gazów CO2 i CH4, a właściwościami węgla kamiennego, w odniesieniu do konkretnych warunków geologiczno złożowych. Informacje te są istotne zarówno ze względu na możliwość uzyskania danych dotyczących oddziaływania mieszaniny gazów z węglem, jak również prognozowanie ewentualnych skutków długoterminowego składowania CO2. Uwzględniając długotrwałość procesu oraz stabilność takiego układu niezbędne jest dokładne poznanie fizycznych właściwości węgli. W tym celu pożądanych istotnych informacji dostarczają izotermy sorpcji, w połączeniu z właściwościami fizykochemicznymi sorbentu. Analiza uzyskanych wyników pozwoliła na wykazanie zależności wpływu stopnia uwęglenia i współczynnika odbicia światła witrynitu na wartość chłonności sorpcyjnej badanych węgli.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Purpose: The purpose of this investigation is to substantiate by means of numerical simulation the expedience of high-temperature utilization of used tires with subsequent methanation of fuel gases and separation of multicomponent hydrocarbon mixtures to drain the liquefied methane. Design/methodology/approach: The investigation was carried out by means of numerical simulation. In mathematical description of gas processes relations of thermodynamics and heat and mass transfer were used. To determine the coefficients of thermal and physical parameters of working bodies the Peng-Robinson equation of state was used through the computer program REFPROP. The system of equations is represented as the interrelations between the functional elements according to the principle "output from the element A – input into the element B". Its solution was obtained by the method of successive approximations, namely by the Newton-Raphson iteration method. Using this method we have determined the values of temperature, pressure, mass flow rate and mass content of the hydrocarbon gas mixture components in each reference cross-section of the power facility. Findings: As a result of numerical simulation, it is determined that when the multicomponent hydrocarbon mixtures are separated, three flows of energy resources may be obtained: with a high mass content of methane of 91.5% and 83.4%, which may be used as motor fuel, and a gas flow suitable for maintaining the process of waste gasification. However, to remove heat in the condenser of the rectification column, it is necessary to use expensive liquid nitrogen. The cost of methane production may be reduced if the condenser is removed from the rectification column. However, such approach reduces the overall yield of commercial products almost in four times and significantly reduces the methane with the third product (molar percentage of 35%). Research limitations/implications: The investigation was carried out for the material of used tires without a metal frame. Practical implications: The implementation of the technology of high-temperature recycling of used tires gives the opportunity to use the generated synthetic gas to maintain the process of utilization, and gives the opportunity to produce liquefied methane, suitable for storage. Originality/value: The main problem of high-temperature recycling of tires is the emission of toxic gas to the atmosphere. It is proposed to allocate methane energy resource from this gas. For the first time an attempt was made to justify the expedience of the technology of high-temperature utilization of tires for liquefied methane production.
Concentrations of CO and NOx during combustion of propane/natural gas mixtures in air and in air enriched with oxygen have been investigated. The mixtures were: low-propane (up to 10 vol. %) and high-propane (up to 45 vol. %) types. A large effect of the propane content on the CO concentration in combustion gases was observed; stronger for the low-propane mixtures. The increase in the NOx concentration with increasing propane content was lower and similar for the two types of mixtures.
The efficiency of natural gas transportation hinges largely on the quality of technological processes involved. Imperfect separation process can lead to the liquid particles remaining in the gas and entering the transport systems, causing various technological issues with gas pipelines (clogging, hydrate formation, corrosion wear, etc.). The presence of mechanical particles in gas mixtures accelerates the degradation of metallic components of the transport system due to erosion. Additionally, the multiphase nature of gases contributes to complications during transportation, altering the quality indicators when different gas qualities are mixed. Consequently, the composition of gas mixtures, their mechanical particles, moisture, and other indicators, deviate non-linearly from their initial values. The technological condition of the main gas pipelines significantly impacts their discharge capacity and hydraulic characteristics. Failure to clean natural gas to current standards and requirements at production stations can result in condensation of water and hydrocarbon vapours in pipelines, leading to the accumulation of the liquid phase in the cavities of the pipeline and the formation of blockages due to hydrate compounds formation, the reduction of the cross-section of the gas pipeline or its complete blockage. Sediment accumulation on the inner surfaces of gas pipelines installed in complex geographical conditions adversely affects transportation system, increasing maintenance, energy, and transportation costs. Utilizing gas composition as an auxiliary tool (indicator) for diagnosing various technological processes and predicting transport parameters has been investigated in numerous research works in the oil and gas production industry.
PL
Efektywność transportu gazu ziemnego zależy w dużej mierze od jakości procesów technologicznych. Niewłaściwy proces separacji może skutkować pozostawaniem cząstek cieczy w gazie i przedostawaniem się ich do systemów transportowych, co z kolei może powodować różne problemy technologiczne związane z gazociągami (zatykanie, powstawanie hydratów, korozja itp.). Obecność cząstek mechanicznych w mieszaninach gazowych przyspiesza degradację metalowych elementów systemu transportowego w wyniku erozji. Ponadto wielofazowy charakter gazów przyczynia się do powstania problemów podczas transportu, ponieważ mieszanie gazów o różnych właściwościach powoduje zmianę wskaźników jakościowych. W rezultacie skład mieszanin gazowych, ich cząstki mechaniczne, wilgotność i inne wskaźniki odbiegają nieliniowo od wartości początkowych. Na przepustowość i charakterystykę hydrauliczną głównych gazociągów znacząco wpływa ich stan technologiczny. Jeśli gaz ziemny nie zostanie oczyszczony zgodnie z obowiązującymi normami i wymaganiami na stacjach produkcyjnych, może to skutkować kondensacją wody i oparów węglowodorów w rurociągach, prowadząc do gromadzenia się fazy ciekłej w pustych przestrzeniach rurociągu i powstawania zatorów z powodu tworzenia się związków hydratowych, zmniejszenia przekroju gazociągu lub jego całkowitego zablokowania. Gromadzenie się osadów na wewnętrznych powierzchniach gazociągów zainstalowanych w złożonych warunkach geograficznych niekorzystnie wpływa na system transportowy, zwiększając koszty konserwacji, energii i transportu. Wykorzystanie składu gazu jako narzędzia pomocniczego (wskaźnika) do diagnozowania różnych procesów technologicznych i przewidywania parametrów transportu było przedmiotem licznych prac badawczych w przemyśle wydobywczym ropy naftowej i gazu ziemnego.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.