W niniejszym artykule przedstawiono wyniki optymalizacji transferu energii w mikrofalowym generatorze plazmy o strukturze współosiowej zasilanym falowodem WR 340. Do obliczeń posłużono się programem Comsol Multiphysics. Dla zwartego odcinka linii współosiowej o optymalnej długości 52 mm, minimalny stosunek mocy fali odbitej do mocy fali padającej mierzony w płaszczyźnie wejściowej prezentowanego generatora plazmy zmniejszył się czterokrotnie.
EN
We present optimization process of energy transfer in waveguide-based, coaxial-type microwave plasma source (MPS). The MPS did not work correctly. Comsol Multiphysics software was used to numerical investigate the problem. For shorted coaxial line section length equal to 52 mm the input microwave power reflection coefficient decreased 4 times.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The coaxial microwave plasma source (MPS) is a device used to produce high temperature plasma at atmospheric pressure and high working gases flow rates. In our experiment the plasma was generated with 2.45 GHz microwaves at powers between 600 W and 5600 W. At optimal positions of movable plunger, the use of argon, nitrogen and methane as the working gases caused, that 2 %, 1 % and 5 % of the incydent power was reflected, respectively. The MPS can be used in gas processing applications.
PL
Prezentowany współosiowy mikrofalowy generator plazmy jest urządzeniem wytwarzającym plazmę o wysokiej temperaturze pod ciśnieniem atmosferycznym, przy wysokich przepływach gazów. Plazma wzbudzana jest mikrofalami o częstotliwości 2,45 GHz i mocy od 600 W do 5600 W. Odpowiednio dla argonu, azotu oraz metanu przy optymalnym położeniu ruchomego zwarcia moc fali odbitej wynosiła 2%, 1% oraz 5% mocy fali padającej. Generator plazmy może być używany m.in. do obróbki gazów.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
W celu optymalizacji mikrofalowego generatora plazmy zasilanego falowodowo wykorzystywanego do produkcji wodoru zbadano wpływ koncentracji elektronów w plazmie i wysokości obniżonej sekcji falowodu h na charakterystyki strojenia tego generatora. Wysokość h dobrano tak, by generator pracował efektywnie i stabilnie w dużym zakresie zmian koncentracji elektronów. Charakterystyki strojenia otrzymane numerycznie dla optymalnej wysokości 10 mm porównano z wynikami eksperymentu uzyskując bardzo dobrą zgodność.
EN
To optimize a waveguide-based microwave plasma source for hydrogen production the influence of electron concentration in the plasma and the height h of the reduced-height waveguide section on tuning characteristics has been examined. The optimal height has been chosen so that the plasma source worked efficiently and stably in a wide range of electron concentration. The tuning characteristics obtained numerically for the optimal height 10 mm were compared with experimental ones. A very good agreement has been found.
Mikrofalowy moduł plazmowy (MMP) służy do produkcji wodoru poprzez reforming węglowodorów. W pracy przedstawiono wyniki optymalizacji transferu energii w MMP o strukturze współosiowej zasilanym falowodem WR 340. W omawianym MMP wyładowanie mikrofalowe powstaje pod ciśnieniem atmosferycznym, a częstotliwość pracy wynosi 2,45 GHz. Omawiany moduł mikrofalowy jest wyposażony w ruchomy zwierak falowodowy, który stanowi element strojący. Optymalizacja prezentowanego MMP polega na obliczeniu wymiarów elementów konstrukcyjnych, które zapewnią minimalny stosunek mocy fali odbitej do mocy fali padającej w płaszczyźnie wejściowej w możliwie najszerszym zakresie zmian położenia zwieraka falowodowego ls. Optymalizacja została przeprowadzona numerycznie za pomocą programu Comsol Multiphysics. Główne elementy konstrukcyjne, które podlegały optymalizacji to długość zwartego odcinka linii współosiowej, średnica wewnętrznego przewodu linii współosiowej oraz wysokość falowodu o obniżonej wysokości. Oprócz sprawności energetycznej pożądane jest, aby kształt charakterystyki strojenia nie zależał od parametrów plazmy, które z kolei zależą od takich czynników jak moc mikrofal absorbowanych, skład i natężenie przepływu gazu roboczego.
EN
Microwave plasma module (MPM) is used for hydrogen production via conversion of hydrocarbons. We present optimization of energy transfer in the waveguide-supplied coaxial-linebased MPM. The MPM operates at atmospheric pressure and frequency of 2.45 GHz. The MPM is terminated with movable plunger which plays the role of the tuning element. Tuning characteristics are defined as the dependence of the PR/PI,i. e. the fraction of the incident microwave power reflected at the MPM input as a function of the position ls of the movable plunger, where PR and PI are power reflected and power incident, respectively. The powers PR and PI are measured in input plane of the MPM. The main purpose of the optimization is to calculate dimensions of some construction elements which ensure the lowest level of PR/PI in widest range of normalized to wavelength movable plunger position (ls/λg). Optimization has been performed using Comsol Multiphysics software. The main construction elements which have been optimized are the length of the shorted coaxial line section, the diameter of the inner conductor of coaxial line and finally the height of the reduced height waveguide section. It is also desired that the shape of the tuning characteristics should be independent of plasma parameters which depend on working gas type, working gas flow rate and power absorbed.
5
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The cylindrical microwave plasma source (MPS) is a device used to produce high temperature plasma at atmospheric pressure and high working gases flow rates. In our experiment the plasma was generated with 2.45 GHz microwaves at powers between 600 W and 6000 W. At optimal positions of movable plunger, the use of argon, nitrogen and methane as the working gases caused, that 15 %, 0 % and 17 % of the incident power was reflected, respectively. The MPS can be used in gas processing applications.
PL
Prezentowany cylindryczny mikrofalowy generator plazmy jest urządzeniem wytwarzającym plazmę o wysokiej temperaturze pod ciśnieniem atmosferycznym, przy wysokich przepływach gazów. Plazma wzbudzana jest mikrofalami o częstotliwości 2,45 GHz i mocy od 600 W do 6000 W. Odpowiednio dla argonu, azotu oraz metanu przy optymalnym położeniu ruchomego zwarcia moc fali odbitej wynosiła 15%, 0% oraz 17% mocy fali padającej. Generator plazmy może być używany m.in. do obróbki gazów.
6
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Mikrofalowe aplikatory plazmowe wykorzystuje się między innymi do obróbki gazów, w tym do produkcji wodoru poprzez reforming węglowodorów. Omówiony aplikator plazmowy pracuje przy częstotliwości 2,45 GHz. Wyładowanie mikrofalowe powstaje w tym aplikatorze pod ciśnieniem atmosferycznym. Głównym elementem konstrukcyjnym aplikatora jest falowód o obniżonej wysokości, w którym zamontowano dwie elektrody w postaci prętów. Dość dobra zgodność wyników obliczeń charakterystyk strojenia z wynikami pomiarów świadczy o tym, że mimo pewnych ograniczeń w stosowaniu schematów zastępczych o stałych skupionych są one przydatne w praktyce.
EN
We present equivalent circuit of existing cavity-resonant type microwave plasma applicator. The applicator can be used for conversion of hydrocarbons into hydrogen. It operates at atmospheric pressure and frequency of 2.45 GHz. The discussed applicator construction is based on ideas described in US patent applications. There are two electrodes mounted in reduced height waveguide. The equivalent circuit includes formulas which allow to calculate tuning characteristics of discussed cavity-resonant-type microwave applicator. The calculated tuning characteristics are very similar to those obtained from an experiment.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.