Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 8

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  microstructure evolution
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The influence of cryogenic treatment (CT) on the microstructure and mechanical properties of Cu46Zr46Al8 glassy matrix composite fabricated by the process copper of mould suction casting. The distribution and morphology of test samples of CuZr phase changed under CT. After CT, the second phase is distributed more homogenously, and the morphology was transformed from dendrites to plates. This change in the microstructure improved the mechanical properties of the composite. Although compression fracture was still the brittle mode, the compression fracture strength was improved greatly after CT. Due to the morphological changes, the microhardness was increased about 18.55% when the treatment time was 72 h.
2
Content available remote On micro-damage in hot metal working. Part 1: Experimental investigation
75%
EN
An experimental programme was defined and performed to investigate the characteristics of micro-damage for a plain CMn and a free machining steel under hot forming conditions. To investigate damage locations - at grain boundaries and around second phase inclusions - a series of constant strain rate tests were carried out on the free machining steel, which contained manganese sulphide inclusions. Specimens from both materials were strained to failure under tension using a Gleeble material simulator at a constant temperature of 1273 K, with strain rates = 0.01-10 s-1. The damage characteristics of the two different steel microstructures was analysed through microstructural examinations of the tested specimens. Particular attention is focussed on damage locations and features. To investigate the recovery of materials between the intervals of hot deformation, a series of two-step tensile tests were carried out at 1273 K and 10 s-1. The two-step specimens were initially deformed to a strain varying from 0.3-0.7, held for varying recovery periods of 0.3-10 s, then stretched to failure. Flow stress features and strains to failure during the second stage of deformation were analysed with respect to different recovery periods and strain levels at the first stage of deformation. The damage features discovered from the experimentation and microstructural examination provide theoretical evidence to form unified viscoplastic damage constitutive equations for hot forming of free machining steels, which are described in the companion paper.
|
|
tom Vol. 32, nr 2
90-97
PL
W pracy przedstawiono analizę przestrzennego stanu odkształcenia dla procesu kucia wydłużającego stopu tytanu Ti-6Al-4V z wykorzystaniem metody elementów skończonych z założeniem sztywno-plastycznego modelu odkształcanego ciała. Przedstawiono wyniki prac związanych z symulacją schematu płynięcia metalu i zjawisk cieplnych w procesie odkształcania materiału w warunkach kucia na gorąco. Analizę numeryczną wykonano z wykorzystaniem programu DEFORM-3D, składającego się z części mechanicznej, termicznej i mikrostrukturalnej. Rezultaty obliczeń umożliwiają określenie rozkładu intensywności odkształcenia, intensywności naprężeń, naprężeń średnich i temperatury w objętości odkuwki. Rozwiązanie uzupełniono o model rozwoju mikrostruktury w czasie odkształcenia, który pozwala wyznaczyć rozkład wielkości ziarna i ułamka objętości materiału zrekrystalizowanego wewnątrz odkształcanych odkuwek. Wartości naprężenia uplastyczniającego dla stopu tytanu Ti-6Al-4V przyjmowano na podstawie przeprowadzonych badań plastometrycznych dla różnych wartości odkształceń, prędkości odkształceń i dla ustalonego zakresu temperatury przeróbki plastycznej na gorąco (?p = ?(?, ?˙, T)). Badania przeprowadzono w zakresie temperatury od 1023 K do 1373 K, przy czym ze wzrostem temperatury obserwowano obniżenie poziomu naprężenia uplastyczniającego. Doświadczalnie wyznaczone krzywe ?p = f(?) wykazują charakterystyczne maksimum naprężenia uplastyczniającego, które występuje przy odkształceniu nieco powyżej ?h = 0,20. Kucie przeprowadzono w kowadłach płaskich oraz w kowadłach specjalnych trójpromieniowych. Dla badanego stopu tytanu charakterystykę właściwości cieplnych, takich jak: gęstość, ciepło właściwe i przewodnictwo cieplne przyjęto na podstawie danych eksperymentalnych i zadawano jako funkcje temperatury. W pracy przedstawiono rozkład ułamka objętości zrekrystalizowanej dynamicznie i średniej wielkości ziarna na powierzchni poprzecznego przekroju próbki ze stopu tytanu Ti-6Al-4V podczas kucia wydłużającego w kowadłach płaskich. Rekrystalizacja dynamiczna rozpoczyna się w dużej części obszaru poddanego odkształceniu, a ułamek objętości zrekrystalizowanej dynamicznie podczas kucia na kowadłach płaskich osiąga swoje maksimum w środku odkuwki i wynosi 70% (dla gniotu 0,70). Dla powierzchni kontaktowych i bocznych ułamek objętości zrekrystalizowanej jest dużo mniejszy i wynosi 20%. Przewidywana wielkość ziarna jest najmniejsza w środku odkuwki i wynosi 24 ?m (dla gniotu 0,70) i 44 ?m dla powierzchni czołowych i bocznych odkuwki. Ze wzrostem odkształcenia obserwowano zmniejszanie wielkości ziarna. Zastosowane w badaniach kowadła specjalne trójpromieniowe wykazały korzystny wpływ na rozkład odkształceń i naprężeń w procesie kucia stopu tytanu Ti-6Al-4V. Największe wartości intensywności odkształcenia występują w obszarach odkuwki znajdujących się pod wypukłymi powierzchniami kowadeł (?i /?h = 1,44), środkowy obszar odkuwki doznaje mniejszych odkształceń (?i /?h = 0,97). Dużą zaletą kucia w tych kowadłach jest wysoka równomierność rozkładu intensywności odkształcenia. Analizą objęto również zmiany mikrostruktury podczas kucia w tych kowadłach. Podczas kucia w kowadłach specjalnych trójpromieniowych ułamek objętości zrekrystalizowanej dynamicznie osiąga swoje maksimum w obszarach odkuwki znajdujących się pod wypukłymi powierzchniami kowadeł i wynosi 65% dla gniotu 0,70. Dla środkowych części odkuwki jest mniejszy i wynosi 56%. Wielkość ziarna na powierzchni styku odkształcanego materiału z kowadłami trójpromieniowymi wynosi 20 ?m oraz 27,5 ?m dla strefy centralnej odkuwki i gniotu ?h = 0,70. Na podstawie otrzymanych wyników stwierdzono, że rozkład wielkości ziarna jest znacznie korzystniejszy w kowadłach trójpromieniowych w porównaniu z kowadłami płaskimi. Wyniki teoretyczne poddano weryfikacji eksperymentalnej.
EN
A three-dimensional rigid-plastic finite element (FEM) analysis has been performed to quantitatively describe the hot stretch forging process of Ti- -6Al-4V titanium alloy. Finite element method was employed to model plastic flow and heat transfer in the deformed material. For the numerical modelling a commercial program DEFORM-3D with thermomechanical and microstructural evolution coupled FEM code had been employed. The numerical calculation gave an assessment of the strain, strain rate, stress and temperature distributions in the workpiece. This allowed the prediction of the microstructure evolution during hot forging. A model was developed to predict grain size and recrystallized volume fraction during hot forging. The flow curve is determined as a function of strain, strain rate and temperature (?p = ?(?, ?˙, T)). The flow curves show the flow softening behavior in the temperature ranges of 1023 K and 1373 K, the extent of flow softening decreases to a lesser degree with an increase in temperature. In the present experiment, the peak stress was observed at true strain about 0.20. In the study, two pairs of anvils were used in the computer simulations and experimental tests of the stretch forging process: flat and assembly of three-radius anvils. Variation of the physical properties of workpiece for the Ti-6Al-4V titanium alloy as function of temperature. The distribution of dynamical recrystallized volume fraction and mean grain size from simulation in flat anvils, has been obtained. The fraction of dynamic recrystallization has been 70% (for the reduction of 0.70) at center region, and 20% at die contact region. Predicted grain size from simulation is 24.0 ?m (for the reduction of 0.70) at center region, and 44.0 ?m at die contact region. The recrystallized grain size decreased with increasing strain. For specimens deformed in the assembly of three-radius anvils the effective strain distribution was most uniform. After the second reduction values of local deformations in the range ?i /?h = 0.97 has been obtained in the central parts of specimen cross-section and in the ?i /?h = 1.44 in the external specimen layers. The distribution of dynamical recrystallized volume fraction and mean grain size from simulation in the assembly of three-radius anvils, has been obtained. The fraction of dynamic recrystallization has been 56% (for the reduction of 0.70) at center region, and 65% at die contact region. Predicted grain size from simulation is 27.5 ?m (for the reduction of 0.70) at center region, and 20 ?m at die contact region. Based on the results it can be stated that with the increase of relative reduction, the mean grain size decreases, maximal value of mean grain size has been observed for flat anvils and minimal for shape of three-radius anvils. The best results from the quality point of view has been obtained for three-radius anvils. The results of theoretical investigation were verified by experimental tests.
|
|
tom Vol. 60, iss. 3A
1639--1647
EN
The paper presents the analysis of the three-dimensional strain state for the cogging process of the Ti-6Al-4V alloy using the finite element method, assuming the rigid-plastic model of the deformed body. It reports the results of simulation studies on the metal flow pattern and thermal phenomena occurring in the hot cogging process conducted on three tool types. The computation results enable the determination of the distribution of effective strain, effective stress, mean stress and temperature within the volume of the blank. This solution has been complemented by adding the model of microstructure evolution during the cogging process. The numerical analysis was made using the DEFORM-3D consisting of a mechanical, a thermal and a microstructural parts. The comparison of the theoretical study and experimental test results indicates a potential for the developed model to be employed for predicting deformations and microstructure parameters.
PL
W pracy przedstawiono analizę przestrzennego stanu odkształcenia dla procesu kucia wydłużającego stopu tytanu Ti-6Al-4V z wykorzystaniem metody elementów skończonych z założeniem sztywnoplastycznego modelu odkształcanego ciała. Przedstawiono wyniki prac związanych z symulacją schematu płynięcia metalu i zjawisk cieplnych w procesie kucia na gorąco w trzech rodzajach narzędzi kuźniczych. Rezultaty obliczeń umożliwiają określenie rozkładu intensywności odkształcenia, intensywności naprężeń, naprężeń średnich i temperatury w objętości odkuwki. Rozwiązanie uzupełniono o model rozwoju mikrostruktury podczas kucia. Analizę numeryczną wykonano z wykorzystaniem programu DEFORM-3D, składającego się z części mechanicznej, termicznej i mikrostrukturalnej. Porównanie teoretycznych i eksperymentalnych rezultatów badań wskazuje na możliwość zastosowania opracowanego modelu do prognozowania odkształceń i parametrów mikrostruktury.
|
|
tom Vol. 20, iss. 2
118--122
EN
The mold temperature of the downward continuous unidirectional solidification (CUS) cannot be controlled higher than the liquidus of alloys to be cast. Therefore, the continuous casting speed becomes the main parameter for controlling the growth of columnar crystal structure of the alloy. In this paper, the tin bronze alloy was prepared by the downward CUS process. The microstructure evolution of the CUS tin bronze alloy at different continuous casting speeds was analysed. In order to further explain the columnar crystal evolution, a relation between the growth rate of columnar crystal and the continuous casting speed during the CUS process was built. The results show that the CUS tin bronze alloy mainly consists of columnar crystals and equiaxed crystals when the casting speed is low. As the continuous casting speed increases, the equiaxed crystals begin to disappear. The diameter of the columnar crystal increases with the continuous casting speed increasing and the number of columnar crystal decreases. The growth rate of columnar crystal increases with increasing of the continuous casting speed during CUS tin bronze alloy process.
EN
A spray formed 7055 Al alloy, and traditional formed 6061 Al and 7A52 Al alloy were subjected to extrusion. Later 7055Al and 7A52 treated with T6 and 6061 Al treated with T6511 heat treatment. To investigate the microstructure evolution by optical microscopy (OM), scanning electron microscopy (SEM), electron back scattering diffraction (EBSD) and X-rays diffraction pattern (XRD) analysis were employed to observe the variation in mechanical properties and damages patterns of single layered aluminum alloys impacted by heavy tungsten alloy (WHA) projectile. During impact a substantial increase in temperature inside the target material caused melting on crater wall. The hard metastable intermetallic compound and pores were produced on penetration path owing to diffusion of projectile particles and rapid melt re-solidification. These compounds enhance the hardness (600-650 HV0.1/10) in the middle deformed channels of 7055 Al alloy target. In addition, small size pores, whirl-pool and white adiabatic shear bands were observed in 7A52 and 6061 Al alloys, respectively. The variation in hardness and microstructure of Al alloys target was limited within the 2 mm area from the perforation path. 7055-T6 Al alloy has demonstrated better ballistic protection in terms of strength, mass efficiency (N), depth of penetration (DOP) and penetration path diameter in comparison of other Al alloys.
EN
Cross wedge rolling (CWR) is one of the most effective plastic deformation methods utilized for the production of shaft parts or non-shaft preforms with refined grains and improved mechanical properties. The main goal of this work was to study the influence of CWR process parameters on the microstructure evolution and mechanical properties of a TC6 alloy and determine the suitable process parameters for a TC6 alloy blade preform fabricated with CWR. The results showed that the volume fraction of the equiaxed α phase (fα_e) decreased from ~ 0.38 to ~ 0.04 by increasing the initial deformation temperature, and the elongation (El) also decreased from ~ 19.6 to ~ 11.8% because dislocation slip first started in the equiaxed grains and then dispersed into the adjacent grains. Thus, additional equiaxed grains contributed to an increased plasticity. Moreover, with an increasing area reduction, the value of fα_e increased from ~ 0.14 to ~ 0.31, and the grain refinement and microstructure uniformity also increased. In addition, the El was significantly reduced by over 50%, but the ultimate tensile strength (UTS) and yield strength (YS) increased under WC (water cooling) conditions due to the precipitation of the acicular secondary α phase and pinning effect of the small equiaxed α phase. Based on the determined suitable parameters, the TC6 alloy blade preform was successfully manufactured by CWR, the microstructure was evenly distributed, and the UTS, YS and El were 1120.1 MPa, 1020.9 MPa and 15.2%, respectively, which meet the current technical requirements.
EN
The features of microstructure formation and properties of commercial pure aluminum alloy (Al 99.5%) obtained by radial-shear rolling (RSR) method at the different heating temperatures of 25, 200, 250, 300 and 350 °C were examined. In this paper, the rods with diameter of 14 mm were obtained from initial billet with diameter of 60 mm in five passes. The microstructure analysis with electron backscatter diffraction (EBSD), measurements of microhardness HV over cross-section, and tension test for determination of mechanical properties were carried out for these rods. The FEM simulation of RSR process and calculation of Zener–Hollomon parameter (Z) were carried out with Software QFORM. The obtained rods have the gradient microstructure typical of RSR characterized by surface layer with ultrafine grain structure (UFG) and grain size from 0.3 to 5 µm. In the central part of rod, the fiber deformed structure with minimal fraction of recrystallized grains (< 5%) is formed. This combination is optimal for simultaneous achievement of high strength (UTS ~ 107–110 MPa; YS ~ 100–109 MPa; ~ 35–40 HV) and ductility (El ~ 15–30%). The most intensive growth of plastic properties is observed at rolling temperatures close to the temperature of the onset of recrystallization, it is associated with additional deformational heating of surface layers and the formation of partially recrystallized structure. The obtained distribution dependences of average size of dynamic recrystallized grain on Zener–Hollomon parameter showed that the decrease in parameter Z leads to the increase in size of recrystallized grain for RSR process.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.