In this paper are presented results of physical and numerical simulation of forging and controlled-cooling processes. Rheological, microstructural and phase transition models for the simulation were developed using Gleeble 3800 and DIL 805A/D tests. All models were implemented into the FE code and the microstructure and mechanical properties of final products were predicted. Results of simulation were compared with mechanical properties of an actual forging.
PL
W artykule przedstawiono wyniki symulacji fizycznych oraz numerycznych procesów kucia i przyspieszonego-kontrolowanego chłodzenia po kuciu. Dla symulacji na podstawie eksperymentów wykonanych na urządzeniach Gleeble 3800 i DIL 805A/D opracowano model reologiczny, rozwoju mikrostruktury oraz model przemian fazowych. Wszystkie modele zostały zaimplementowane w kodzie MES. W symulacji numerycznej obliczono parametry charakteryzujące mikrostrukturę oraz właściwości mechaniczne materiału odkuwek. Wyniki symulacji porównano z danymi dla rzeczywistych odkuwek.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Cement–asphalt mortar (CAM) has been widely used as a cushion layer in prefabricated concrete slab tracks. However, the deformation and failure of different CAMs under compression are scarcely understood. In this study, therefore, we studied the compressive deformation and failure modes of CAMs with different asphalt–cement ratios (A/Cs or m(A)/m(C) = 0.2 ~ 1.0) together with the temperature effects, to understand the mechanisms behind their mechanical behaviour. Results indicated that, at room temperature, CAMs with low A/Cs (0.2 ~ 0.4), namely CAM-Ls, deformed and failed in a quasi-brittle manner, whereas CAMs with high A/Cs (0.8 ~ 1.0), namely CAM-Hs, were more like ductile materials. The temperature effect could be negligible for CAM-Ls, but significant for CAM-Hs. Low temperatures would cause a ductile-to-brittle transition in CAM-Hs and high temperatures would pose an adverse effect on their deformation and failure under compression. To understand the deformation and failure mechanisms of different CAMs and the temperature effects, microstructural models for CABs with relevant A/Cs were proposed. The microstructural models of CABs demonstrated that the compressive deformation and failure of CAMs depend primarily on their CABs. It is also indicated that, experimentally and theoretically, the boundary A/C value between CAM-Ls and CAM-Hs might be around 0.6, below which the hardened cement paste (hcp) form the matrix of the CAM, whilst above which the asphalt binder turns to the primary continuous phase in the CAB. Due to the microstructure change in CABs with the increasing A/C, the CAMs transitioned from quasi-brittle to ductile materials under compression.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.