Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  microseismicity
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Microseismic monitoring is an important technique that can be used to identify fractures in rock mass. The aim of this article is to identify, on the basis of the location of microseismic events, structures formed by hydraulic fracturing in the Wysin-2H/2Hbis horizontal well from the Baltic Basin in northern Poland, and to compare the patterns of these structures with the direction of regional stresses. The authors proposed a novel multi-step workflow for finding these structures. To be able to delineate the structures from microseismic events with greater accuracy, a collapsing algorithm was used. Then, based on the Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) clustering algorithm and the elongation coefficient of each cluster, probable fissures were identified and compared against the maximum horizontal stress direction. In addition, based on the 3D seismic data from the Wysin and the calculated geomechanical parameters in the monitoring well, the probability classes of brittleness indices in the LMR (λρ-μρ) parameter domain were determined. A comparative analysis was performed between the two variants of microseismic event location (before and after the collapsing procedure) and the estimated probability of a given class of brittleness index. The comparison of the event location with the 3D seismic data was used to validate the results before and after collapsing due to the high resolution of the seismic method. It is shown that the collapsed events appeared in more rigid regions, where more energy release is expected.
EN
We use the peak frequency method to estimate effective P- and S-wave quality factors (QP and QS) based on the recorded waveforms of microseismic events. We analyze downhole datasets recorded during the hydraulic stimulation of the two unconventional gas reservoirs located in the northern part of Poland. The effective attenuation is lower in the deeper reservoir consistent with higher compaction. In both cases, we observe high QS values relative to QP which is consistent with attenuation coefficients of saturated reservoirs.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.